Volume 33 Issue 10
Oct.  2007
Turn off MathJax
Article Contents
Xu Libo, Gao Ge. Computation of shock wave/boundary-layer interactions with GAO-YONG turbulence equations[J]. Journal of Beijing University of Aeronautics and Astronautics, 2007, 33(10): 1136-1140. (in Chinese)
Citation: Xu Libo, Gao Ge. Computation of shock wave/boundary-layer interactions with GAO-YONG turbulence equations[J]. Journal of Beijing University of Aeronautics and Astronautics, 2007, 33(10): 1136-1140. (in Chinese)

Computation of shock wave/boundary-layer interactions with GAO-YONG turbulence equations

  • Received Date: 28 Sep 2006
  • Publish Date: 31 Oct 2007
  • Rational GAO-YONG compressible turbulence equations were applied to simulate numerically the flat plate shock wave/turbulent boundary layer interactions. The equations were solved using the semi-implicit method for pressure-linked equations (SIMPLE) algorithm. The discretization of convection and diffusion terms were respectively adopted quadratic upwind interpolation of convective kinematics(QUICK) scheme with third-order precision and center difference (CD) scheme.The calculational results predict well the flow characteristics of turbulent boundary layer separation induced by incident shock wave: a separation shock followed by expansion fan around separation bubble and shock in reattachment point.The computational results of the time-averaged parameters, such as the velocity profiles along the x-coordinate, pressure along the wall surface and skin-friction coefficient along the wall were compared with the experimental results. It is shown that when the GAO-YONG compressible turbulence equations are applied to the shock wave/turbulent boundary layer interacting cases, the basic feature and details of shock flows can be well simulated.

     

  • loading
  • [1] Dolling D S. 50 Years of shock wave/boundary layer interaction research: what next [J]. AIAA Journal, 2001,39(8):1517-1531 [2] Liou William,Huang George.Turbulence model assessment for shock wave/turbulent boundary-layer interaction in transonic and supersonic flows[J]. Computers & Fluids ,2000 (29):275-299 [3] Thivet F. Lessons learned from RANS simulations of shock wave/boundary layer interactions. AIAA Paper 2002-0583,2002 [4] Hakkinen R J. The interaction of an oblique shock wave with a laminar boundary layer. NASA Memo 2-18-59w, 1959 [5] Gao Ge, Yong Yan. Partial-average-based equations of incompressible turbulent flow[J]. International Journal of Non-Linear Mechanics, 2004,39:1407-1409 [6] 陈懋章.粘性流体动力学基础[M]. 北京:高等教育出版社,1993:68-69 Chen Maozhang.Visious fluid dynamics[M].Beijing:Higher Education Press,1993:68-69(in Chinese) [7] 杨茉,李学恒,陶文铨.QUICK与多种差分方案的比较和计算[J].工程热物理学报,1999,20(5):593-597 Yang Mo,Li Xueheng,Tao Wenquan.Comparation and calculation among QUICK scheme and other diffential schemes[J].Journal of Engineering Thermophysics, 1999,20(5):593-597(in Chinese) [8] 陶文铨. 计算传热学的近代进展[M].北京: 科学出版社,2000 Tao Wenquan.The development of computational heat transfer[M].Beijing:Science Press,2000(in Chinese) [9] 闫超,陈靓.激波/边界层干扰数值模拟的格式效应[J].航空学报, 1996,17(7):193-196 Yan Chao,Chen Liang.Scheme effect in the simulation of shock wave/boubary layer interactions[J].Journal of Aeronautics, 1996,17(7):193-196(in Chinese) [10] 潘锦珊.气体动力学基础[M].北京:北京航空航天大学出版社,2002 Pan Jinshan.Basic aerodynamics[M].Beijing:Beijing University of Aeroncutics and Astronautics Press,2002(in Chinese) [11] Liou Mengsing.A Newton/upwind method and numerical study of shock wave/boundary layer interactions[J].International Journal for Numerical Methods in Fluids, 1989,9:747-761 [12] Wang Richards.TVD schemes for steady flow solution[J].Journal of Computational Physics ,1991,9:65-72
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views(3114) PDF downloads(1807) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return