Wang Yuanguang, Xu Xu, Cai Guobiaoet al. Analysis of design calculation methods of scramjet combustion chamber[J]. Journal of Beijing University of Aeronautics and Astronautics, 2005, 31(01): 69-73. (in Chinese)
Citation: Deng Hongwu, Pan Wenyan, Tao Zhi, et al. Heat transfer and flow resistance in a notched crossed-rib channel[J]. Journal of Beijing University of Aeronautics and Astronautics, 2007, 33(10): 1158-1161. (in Chinese)

Heat transfer and flow resistance in a notched crossed-rib channel

  • Received Date: 24 Oct 2006
  • Publish Date: 31 Oct 2007
  • The investigation of heat transfer, flow resistance and the pressure across the channel in turbulator cooling channel with a special crossed-rib channel which has slots was studied experimentally, then got amount of experimental results. All experiments were made in stillness states. The method of vapor concreting heat transfer was adopted for the heat transfer experiments. The experiment was conducted in the range of Reynolds number from 5 000 to 45 000. Compared with the channels which are no slots, the same dimensions ones with slots have more significant effects on the whole heat transfer enhancement. Besides, the experimental comparisons of characteristics were made to the different slots width channels. For the channels of different slots width, the heat transfer effects of 4 mm slot width channel are best, the following are 2 mm, 6 mm and 8 mm in turn.

     

  • [1] 秦岭.交错肋通道换热和流阻特性的实验研究 .北京:北京航空航天大学能源与动力工程学院,2006 Qin Ling. Experiment investigation of heat transfer and flow resistance in a crossed-rib channel . Beijing: School Jet Propulsion, Beijing University of Aeronautics and Astronantics , 2006(in Chinese) [2] 曹玉璋,邱绪光.实验传热学[M].北京:国防工业出版社,1998 Cao Yuzhang, Qiu Xuguang. Experimental heat transfer[M]. Beijing: National Defense Industry Press, 1998(in Chinese) [3] Han J C, Zhang Y M. Augmented heat transfer in square channels with parallel, crossed, and v-shaped angled ribs [J]. ASME Journal of Heat Transfer, 1991,113(3): 590-596 [4] 马重芳,张玉明,顾维藻,等.强化换热[M].北京:科学出版社,1990 Ma Chongfang, Zhang Yuming, Gu Weizao, et al. Enhanced heat transfer[M]. Beijing: Science Press, 1990(in Chinese) [5] Bunker R S. Latticework (vortex) cooling effectiveness[J]. Journal of Turbo-machinery, 2004,127(3):471-478 [6] Won S Y, Ligrani P M. Comparisons of flow structure and local Nusselt numbersin channels with parallel-and crossed-rib turbulators[J]. Journal of Heat and Mass Transfer, 2004,47(9): 1573-1586.
  • Relative Articles

    [1]LI Haojian, LI Kebo, LIANG Yangang. Many on Many Energy Optimal Task Allocation Method Based on Interception Capture Region[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2024.0330
    [2]MA S H,ZHANG D,WANG M Y,et al. Directed interactive topology optimization design for multi-agent affine formation maneuver control[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(4):1367-1376 (in Chinese). doi: 10.13700/j.bh.1001-5965.2023.0180.
    [3]TAN C,YU P,LI B,et al. Pressure cascade control of brake-by-wire unit based on direct drive pump-valve cooperative[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(4):1163-1171 (in Chinese). doi: 10.13700/j.bh.1001-5965.2023.0216.
    [4]PANG B W,ZHU J W,BAO W M,et al. High dynamic cooperative topology online optimization and distributed guidance method[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(1):333-339 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.1025.
    [5]DONG J C,GAO Q H,LIU Z H. Planar motion control of distributed-driven vehicles considering dynamic hysteresis[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(12):3842-3853 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0887.
    [6]ZHAI You-hong, LI Chun-tao, SU Zi-kang, LI Xue-bing. Neural network incremental dynamic inversion target drone somersault maneuver control[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2023.0690
    [7]YAN Kun, ZHAO Jin-ze, CHEN Chao-bo, GAO Song, CAO Kai. Neural network-based fault tolerant control for unmanned helicopter with multiple actuator faults[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2023.0699
    [8]LIU S Y,GAO J,SUN K W. Analysis of energy receiving by rigid cell array of solar airship[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(11):3542-3552 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0820.
    [9]ZHANG S,HAN X W,LI R P,et al. Improved remote regulated power supply control scheme in improved flyback converter[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(4):1229-1239 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0458.
    [10]YANG X X,JIANG Z J,ZHANG Y,et al. Distributed cooperative guidance strategy based on virtual negotiation and rolling horizon optimization[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(1):61-76 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0174.
    [11]ZHANG Q C,WANG L,XI J X,et al. Tracking control of unmanned aerial vehicle swarms with leader-following double formation[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(7):2331-2342 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0607.
    [12]QIN M X,WANG Z,LI H L,et al. Obstacle avoidance control of UAV formation based on distributed model prediction[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(6):1969-1981 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0509.
    [13]SHI T X,CHEN L S,LI T S,et al. Distributed adaptive anti-disturbance control for power systems based on multi-agents[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(5):1685-1692 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0496.
    [14]SHI X S,LIN Z Y. Fixed-time distributed convex algorithm over second-order multi-agent systems under bounded disturbances[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(11):2951-2959 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0060.
    [15]CHENG Yi, ZHAO Jin-rui, HUANG Shui-lin, YU Zhi-hao, DENG Xu-dong. Research on dynamic characteristics of distributed multi-rotor/tilting wing aeroelastic coupling[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2023.0253
    [16]HAN X,WANG Y X,CHENG X C,et al. A decentralized multi-sensor fusion estimator using finite memory buffers[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(2):335-343 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0240.
    [17]ZHAO G R,GU H L,HAN X,et al. NNS distributed fusion estimator under multiple network constraints[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(2):229-241 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0225.
    [18]WANG S Y,ZHANG J,YANG L Y. Attitude control law based on L1-ITD for a tail-sitter UAV[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(9):2501-2509 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0681.
    [19]DENG Xiao-long, GAO Xian-zhong, YANG Min-sheng, WANG Yu-jie, ZHU Bing-jie. Energy influence study of stages in cruise profile for near space solar powered unmanned aerial vehicles[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2022.0789
    [20]HU Yan-peng, GUO Jin, ZHOU Meng, WANG Xiang-yu. Research on energy management of solar powered UAV based on energy closed-loop[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2022.0749
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views(2998) PDF downloads(885) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return