Citation: | Wang Kan, Cao Yihua, Yu Ziwen, et al. Numerical simulation of parachute fluid-solid coupling problem and flow analysis[J]. Journal of Beijing University of Aeronautics and Astronautics, 2007, 33(09): 1029-1032. (in Chinese) |
[1] Stein K R, Benney R, Kalro V, et al. Parallell computation of parachute fluid-structure interactions Proceedings of the 14th AIAA Aerodynamic Decelerator Technology Conference, San Francisco, 1997 [2] Stein K, Benney R, Kalro V, et al. Parachute fluid-structure interactions:3D computation[J]. Computer Methods in Applied Mechanics and Engineering, 2000,190:373-386 [3] Kalro V, Tezduyar T E. A parallel 3D computational method for fluid-structure interactions in parachute systems[J]. Computer Methods in Applied Mechanics and Engineering, 2000, 190:321-332 [4] Patankar S V. Numerical heat transfer and fluid flow[M]. New York:McGraw-Hill, 1980 [5] 朱侣蟾译.平面圆形伞充满时的力、应力和形状的近似计算[J].空降技术, 1983(1) :143- 177 Zhu Lüchan. An approximate approach to calculate drag, stress and deformation of inflated flat circular parachute [J]. Landing Technology, 1983(1):143-177(in Chinese) [6] Tezduyar T E. Finite element methods for flow problems with moving boundaries and interfaces[J]. Archives of Computational Methods in Engineering, 2001, 8:83-130 [7] Kalro V, Tezduyar T E. 3D computation of unsteady flow past a sphere with a parallel finite element method[J]. Oceanographic Literature Review, 1998, 45:602 [8] Tezduyar T E. Computational mechanics in modeling of airdrop systems Proceedings of the Israel Annual Conference on Aerospace Sciences, 2001:21-22 [9] Sahu J, Cooper G, Benney R. 3-D parachute descent analysis using coupled CFD and structural codes . AIAA-95-1580,1995 [10] Tezduyar T E, Behr M, Liou J. A new strategy for finite element computations involving moving boundaries and interfaces-the deforming-spatial-domain/space-time procedure:Ⅰ. the concept and the preliminary tests[J]. Computer Methods in Applied Mechanics and Engineering, 1994,94:339-351
|
[1] | LI T,ZHAO Y Q,XU T,et al. Stability control of vehicles powered by non-pneumatic wheels based on robust optimal sliding mode[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(4):1342-1351 (in Chinese). doi: 10.13700/j.bh.1001-5965.2023.0238. |
[2] | WEI J R,WU Q,WU W,et al. Study on global stability of aluminum alloy honeycomb cylinder under axial compression[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(3):962-972 (in Chinese). doi: 10.13700/j.bh.1001-5965.2023.0135. |
[3] | LYU Y Z,WAN H M,XU Y M. Dynamic stability analysis of a single-point hanging container[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(2):419-427 (in Chinese). doi: 10.13700/j.bh.1001-5965.2023.0036. |
[4] | WANG C S,ZHANG X Y,ZHAN Z X,et al. Analysis of compression stability and load capacity of thick composite plate structures[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(1):94-101 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0991. |
[5] | WANG F,ZHENG Q,YANG D K,et al. River parameter measurement research by GNSS-reflectometry[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(12):3771-3779 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0912. |
[6] | WU M P,LIU Y L,GUO Y,et al. A review of algorithms for multi-vector attitude synthesis of research[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(5):1427-1437 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0325. |
[7] | LI Wei, ZHAO Zhigang, ZHAO Xiangtang, LI Zixuan, GANG Zheng. Workspace stability evaluation of multi-engine suspension system based on EWM -TOPSIS[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2024.0546 |
[8] | CHENG H J,YANG J F,LIU Z H,et al. Rule-based integrated stability control of multi-axle special vehicle[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(6):1794-1805 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0569. |
[9] | GAN W B,ZUO Z J,XIANG J W,et al. Research progress on dynamic stability of rotating variant wing opening and closing process for aircraft[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(4):1053-1064 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0469. |
[10] | WANG C,CHEN W J,CHEN W H,et al. Design of suspension weight-support rehabilitation system adapted to fluctuation of human center of gravity[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(7):2322-2330 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0605. |
[11] | ZHAI J D,LU G Q,CHEN F C. Effect analysis of automation levels on stabilization time of driving behaviors[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(11):3477-3483 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0863. |
[12] | YANG Hai-feng, LI Zhi-gang, TAN Yue-dong, XIAO Peng-hui, KONG Wei. Development of Ejection Seat-Dummy Model and Analysis of Seat Tip-off Stability[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2023.0654 |
[13] | KONG D X,YIN Q Z,SONG J Y,et al. Research on turning directional stability of taxiing with changing speed for high-speed UAV[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(12):3476-3488 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0159. |
[14] | WANG W Z,ZHAO R,GUI Y T,et al. Stabilization effects of carbon foam surface on hypersonic boundary layers[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(10):2741-2749 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0703. |
[15] | YANG Jin-hui, WANG Xi-jie, XU Shi-yang, WANG Xiao-li. Study on flame stability of oxygen rich torch igniter[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2023.0528 |
[16] | WANG X L,XU Y F,XUE Y C. Evaluation and optimization of departure flight schedule stability of airport group[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(6):1331-1341 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0462. |
[17] | GAO Yang, XU Guo-ning, WANG Sheng, LI Yong-xiang, CAI Rong, YANG Yan-chu. Stability analysis of stratospheric airship energy system[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2023.0020 |
[18] | LIU S S,LUO L,HAN Q H,et al. Study on lateral-directional stability of a practical high lift-to-drag ratio hypersonic vehicle with momentum lift augmentation[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(11):3010-3021 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0035. |
[19] | XIAO Y,CHEN X,YANG L Y,et al. Analysis of radome error on guidance loop stability[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(11):3066-3074 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0780. |
[20] | XING Yufeng, JI Yi, ZHANG Huimin. Advances and challenges in time integration methods[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(9): 1692-1701. doi: 10.13700/j.bh.1001-5965.2022.0288 |