Citation: | Liu Yun, Tang Fagen, Lin Guangyanet al. Robust proximal support vector machine[J]. Journal of Beijing University of Aeronautics and Astronautics, 2007, 33(09): 1090-1093. (in Chinese) |
[1] 邓乃扬,田英杰. 数据挖掘中的新方法——支持向量机[M]. 北京:科学出版社,2004 Deng Naiyang,Tian Yingjie. A new method of datamining:SVM[M]. Beijing:Science Press,2004(in Chinese) [4] Fung G, Mangasarian O L. Proximal support vector machine classifiers Proceedings of the Seventh ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.New York:ACM,2001:77-86 [2] Chew H G, Bogner R E, Lim C C. Dual ν-support vector machine with error rate and training size biasing ICASSP IEEE Int Conf Acoust Speech Signal Process Proc. Piscataway,NJ:IEEE,2001,2:1269-1272 [3] Lin Chunfu, Wang Shengde. Fuzzy support vector machines[J]. IEEE Transactions on Neural Networks, 2002, 13(2):464-471 [5] 范昕炜,杜树新,吴铁军. 可补偿类别差异的加权支持向量机算法[J]. 中国图象图形学报,2003, 8(9):1037-1042 Fan Xinwei, Du Shuxin, Wu Tiejun. Weighted support vector machine based classification algorithm for uneven class size problems[J]. Journal of Image and Graphics,2003,8(9):1037-1042(in Chinese) [6] 张翔, 肖小玲, 徐光祐. 基于样本之间紧密度的模糊支持向量机算法[J].软件学报,2006,17(5):951-958 Zhang Xiang, Xiao Xiaoling, Xu Guangyou. Fuzzy support vector machine based on affinity among samples[J]. Journal of Software, 2006,17(5):951-958(in Chinese)
|