Yao Shuzhen, Jin Maozhong. Strategy of state transition in UML based on Petri net[J]. Journal of Beijing University of Aeronautics and Astronautics, 2008, 34(01): 79-83. (in Chinese)
Citation: Lin Haibo, Liu Haitao, Wang Fuchi, et al. PZT nanoparticles synthesized by sol-hydrothermal method and properties[J]. Journal of Beijing University of Aeronautics and Astronautics, 2007, 33(07): 856-859. (in Chinese)

PZT nanoparticles synthesized by sol-hydrothermal method and properties

  • Received Date: 18 Jun 2006
  • Publish Date: 31 Jul 2007
  • PZT nanopowders were fabricated at low temperature by modified sol-hydrothermal method, and the effects of the sintering parameter such as sintering temperature, keeping time on the density, grain size, piezoelectric and dielectric properties of the PZT ceramic were investigated. The results show that the particle size distribution of the PZT nanopowders synthesized 270℃ is homogeneous with pure perovskite structure (20~30nm). The optimal properties of the obtained piezoelectric PZT ceramic sintered at 1150℃ for 2h are planna electromechanical coupling factor: 0.50, mechanical quality factor: 410, piezoelectric constant: 220pC/N, dielectric constant: 1060, respectively. Compared with conventional solid reaction methods for PZT powders, the advantage of the modified sol-hydrothermal method are low synthesis temperature and high sintering activity of the powders.

     

  • [1] Haertling Gene H. Ferroelectric ceramics:history and technology [J]. Journal of the American Ceramic Society, 1999, 82 (4):797-818 [2] He Zeming, Ma J, Zhang Ruifang, et al., PZT-based materials with bilayered structure:preparation and ferroelectric properties [J]. Journal of the European Ceramic Society, 2003, 23:1943-1947 [3] Saito H, Takkao T, Tani T, et al. Lead-free piezoceramics [J]. Nature, 2004, 432:84-87 [4] Eric Cross. Lead-free at last [J]. Nature, 2004, 432(4):24-25 [5] Garnweitner G, Hentschel J, Antonietti M, et al. Synthesis of amorphous powder precursors for nanocrystalline PbTiO3, Pb(Zr,Ti)O3, and PbZrO3 [J]. Chemstry of Materials, 2005, 17(18):4594-4599 [6] Corker D L, Whatmore R W, Ringgaard E. Liquid- phase sintering of PZT ceramics [J]. Journal of the European Ceramic Society, 2000, 20:2039-2045 [7] 赵国伟, 黄 海, 夏人伟. 柔性自适应桁架及其振动最优控制实验[J]. 北京航空航天大学学报, 2005, 31(4):434-438 Zhao Guowei, Huang Hai, Xia Renwei. Flexible adaptive truss testbed and its optimal control experiment for vibration [J]. Journal of Beijing University of Aeronautics and Astronautics, 2005, 31(4):434-438(in Chinese) [8] Surowiak Z, Kupriyanoy M F, Czekaj D. Properties of nanocrystalline ferroelectric PZT ceramics [J]. Journal of the European Ceramic Society, 2001, 21:1377-1381 [9] Linardos S, Zhang Q, Alcock J R. Preparation of sub-micron PZT particles with the sol-gel technique [J]. Journal of the European Ceramic Society, 2006, 26(1-2):117-123 [10] Suchanek W L, Lencka M, McCandlish L. Hydrothermal deposition of <001> oriented epitaxial Pb(Zr,Ti)O3 films under varying hydrodynamic conditions [J]. Crystal Growth Design, 2005, 5(5):1715-1727 [11] Gong Wen, Li Jingfeng, Chu Xiangcheng, et al. Effect of pyrolysis temperature on preferential orientation and electrical properties of sol-gel derived lead zirconate titanate films [J]. Journal of the European Ceramic Society, 2004, 24(10/11):2977-2982
  • Relative Articles

    [1]ZHANG Xin-ze, LI Qin, WENG Yi-hui, YOU Yan-cheng. Numerical analysis and flow state prediction of double wedge steady/unsteady flow at different Ma、Re[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2023.0758
    [2]SHI Tong, HE Yunqin, LIANG Guozhu, PAN Hui, ZHU Pingping. Theoretic model of flow resistance for gas-filled accumulators in liquid rockets[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2023.0748
    [3]WU Z Y,GAO Z X,CHEN X M,et al. Mach number effect in shock-wave/turbulent-boundary-layer interaction flow[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(11):3484-3494 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0857.
    [4]CUI Y P,LI Z H,ZHENG G L. Computing convex hull of a generic polygon with simulation of progressive support for an elastic line[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(1):216-223 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0246.
    [5]ZHANG X J,XU C,TIAN F,et al. Utility-enhanced synthesis method of differentially private trajectories[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(12):3615-3631 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.1013.
    [6]CHEN B,LUO L,JIANG A L,et al. Numerical simulation of separation characteristics for internally buried weapon at high Mach number[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(7):2113-2122 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0627.
    [7]XUAN L M,ZOU Z P,ZENG F. Analyzing and modeling flow in tip clearance of transonic turbine rotor[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(9):2374-2384 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0635.
    [8]ZHANG P H,TANG Y,TANG J,et al. Simulation of cavity flow at high Mach number based on adaptive unstructured hybrid mesh[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(6):1311-1318 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0424.
    [9]HAN Y F,HU X S,GAO Y,et al. Comparison of turbulence models for unsteady flow simulation in a long and narrow cabin[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(4):957-964 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0335.
    [10]HE Z P,ZHOU J X,XIN J,et al. Unsteady flow characteristics of turbine rotor passage under rim seal effect[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(2):273-283 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0223.
    [11]WANG Wei-jie, WANG Zhou, PANG Wei-kun, YANG Yang. Research on Angular Momentum Envelope Analysis Method of Frame Momentum Exchange Device[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2023.0268
    [12]ZHANG P H,CHENG X H,CHEN H Y,et al. Unsteady flow mechanism of high Mach number cavity[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(8):1940-1947 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0609.
    [13]MENG L K,ZHU Y C,DING J J,et al. Influence of wedge erosion deformation on working characteristics of jet pipe servo valve[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(11):3177-3187 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0041.
    [14]BI Y P,ZHANG T,HE Y T,et al. Corrosion and fatigue life prediction of aircraft typical lap structures based on life envelope[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(8):2200-2206 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0604.
    [15]LYU Z Y,NIE X Y,ZHAO A B. Prediction of wing aerodynamic coefficient based on CNN[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(3):674-680 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0276.
    [16]WANG R C,ZHANG G X,WANG X Y,et al. Aerodynamic performance analysis of supercritical airfoil with lower surface jet[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(7):1671-1679 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0489.
    [17]ZHANG P H,CHEN H Y,ZHANG J,et al. Passive flow control for weapon bay at high Mach number[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(11):2913-2920 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0790.
    [18]CHEN Z L,LU Z X,XIAO T H,et al. Effect of local oscillation on aerodynamics of thin airfoil in Mars environment[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(11):2938-2950 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0032.
    [19]FANG Yifang, XIANG Gaoxiang, TANG Chun'e, SHI Yuejuan. Numerical simulation on internal flow performances of multi-stage pressure drop valve[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(10): 1915-1924. doi: 10.13700/j.bh.1001-5965.2021.0070
    [20]YANG Lijun, HUANG Dongqi, HAN Wang, LI Jingxuan, FU Qingfei. Influence of flow topology on instability and atomization of liquid jets[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(9): 1757-1766. doi: 10.13700/j.bh.1001-5965.2022.0608
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views(3336) PDF downloads(1246) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return