Volume 33 Issue 04
Apr.  2007
Turn off MathJax
Article Contents
Zhang Guangwei, Kang Jianchu, Li Hesong, et al. Cloud model based algorithm for global optimization of functions[J]. Journal of Beijing University of Aeronautics and Astronautics, 2007, 33(04): 486-490. (in Chinese)
Citation: Zhang Guangwei, Kang Jianchu, Li Hesong, et al. Cloud model based algorithm for global optimization of functions[J]. Journal of Beijing University of Aeronautics and Astronautics, 2007, 33(04): 486-490. (in Chinese)

Cloud model based algorithm for global optimization of functions

  • Received Date: 21 Apr 2006
  • Publish Date: 30 Apr 2007
  • Numerical optimization of given objective functions is a crucial task in many scientific problems. Based on the outstanding characteristics of cloud model on the process of transforming a qualitative concept to a set of quantitative numerical values, and integrate with the basic principle of genetic algorithm, a novel adaptive evolutionary algorithm for continuous global optimization problems was proposed. With the instructions of qualitative knowledge, the extent of searching space is self-adjusted and the possibility of premature and the probability of trapping in local best optimization are greatly reduced, so the algorithm can find high accurate numerical solution within a short time. The algorithm avoids the process of coding and crossover so it is easy to be carried out. By the experiments on typical test functions, the precision, stability and convergence rate were well proved.

     

  • loading
  • [1] 袁亚湘,孙文瑜.最优化理论与方法[M]. 北京:科学出版社,1999:183-218 Yuan Yaxiang, Sun Wenyu. Optimization theory and methods[M]. Beijing:Science Press,1999:183-218 (in Chinese) [2] 王正志,薄涛.进化计算[M]. 长沙:国防科技大学出版社,2000:26-37 Wang Zhengzhi, Bo Tao. Evolutionary programming [M]. Changsha:National University of Defense Technology Press, 2000:26-37 (in Chinese) [3] Holland J H. Adoption in natural and artificial system[M]. Ann Arbor :the University of Michigan Press,1975:32-48 [4] Rowlins G. Foundations of genetic algorithm[M]. Los Altos:Morgan Kanfmann, 1991:45-57 [5] 李德毅,杜益.不确定性人工智能[M].北京;国防工业出版社,2005:171-177 Li Deyi, Du Yi. Indeterminate artificial intelligence[M]. Beijing:National Defense Industry Press, 2005:171-177 (in Chinese) [6] 李德毅,刘常昱.论正态云模型的普适性[J].中国工程科学, 2004, 6(8):28-34 Li Deyi, Liu Changyu. Study on the universality of the normal cloud model[J]. China Engineering Science, 2004, 6(8):28-34 (in Chinese) [7] 李德毅, 刘常昱, 杜鹢, 等.不确定性人工智能[J].软件学报, 2004, 15(11):1583-1594 Li Deyi, Liu Changyu, Du Yi,et al. Artificial intelligence with uncertainty [J]. Journal of Software, 2004, 15(11):1583-1594 (in Chinese) [8] 李德毅.知识表示中的不确定性[J].中国工程科学,2000, 2(10):73-79 Li Deyi. Uncertaintyin knowledge representation [J]. China Engineering Science, 2000, 2(10):73-79 (in Chinese). [9] 刘习春,喻寿益.局部快速微调遗传算法[J].计算机学报, 2006, 29(1):100-105 Liu Xichun, Yu Shouyi. A genetic algorithm with fast local adjustment [J].Chinese Journal of Computers, 2006, 29(1):100-105 (in Chinese)
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views(3325) PDF downloads(1363) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return