Citation: | Sun Mao, Huang Hua. Biomimetic mechanics of micro-air vehicles ——the aerodynamic force of butterfly in forward flight[J]. Journal of Beijing University of Aeronautics and Astronautics, 2006, 32(10): 1146-1151. (in Chinese) |
[1] Weis-Fogh T. Quick estimates of flight fitness in hovering animals, including novel mechanism for lift production[J]. J Exp Biol, 1973, 59:169-230 [2] Ellington C P, Van den Berg C, Willmott A P. Leading edge vortices in insect flight[J]. Nature, 1996, 384:626-630 [3] Dickinson M H, Lehmann F O, Sane S P. Wing rotation and the aerodynamic basis of insect flight[J].Science, 1999, 284:1954-1960 [4] Sun M, Tang J. Unsteady aerodynamic force generation by a model fruit fly wing in flapping motion[J]. J Exp Biol, 2002, 205:55-70 [5] Dudley R. Biomechanics of flight in neotropical butterflies:morphometrics and kinematics[J]. J Exp Biol, 1990, 150:37-53 [6] Betts C R, Wootton R J. Wing shape and flight behaviour in butterflies (lepidoptera:papilionoidea and hesperioidea):a preliminary analysis[J]. J Exp Biol, 1988, 138:271-288 [7] Backenbury J H. Kinematics of take-off and climbing flight in butterflies[J]. J Zool, Lond, 1991, 224:251-270 [8] Brodsky A K. Vortex formation in the tethered flight of the peacock butterfly Inachis Io L (Lepidoptera, Nymphalidae) and some aspects of insect flight evolution[J]. J Exp Biol, 1991, 161:77-95 [9] Rogers S E, Kwak D. Upwind differencing scheme for the time-accurate incompressible Navier-Stokes equations[J]. AIAA Journal, 1990, 28:253-262 [10] Rogers S E, Kwak D, Kiris C. Steady and unsteady solutions of the incompressible Navier-Stokes equations[J]. AIAA Journal, 1991, 33:2066-2072 [11] Rogers S E. On the use of implicit line-relaxation and multi-zonal computations . AIAA-91-1611, 1991 [12] Rogers S E, Pulliam T H. Accuracy enhancements for overset grid methods for moving body problems . AIAA-94-0523, 1994 [13] Meakin R L. On the spatial and temporal accuracy of overset grid methods for moving body problems . AIAA-94-1925, 1994 [14] Sun M, Lan S L. A computational study of the aerodynamic forces and power requirements of dragonfly (Aeschna juncea) hovering[J]. J Exp Biol, 2004, 207:1887-1901 [15] Sun M, Yu X. Flows around two airfoils performing fling and subsequent translation and translation and subsequent clap[J]. Acta Mechanica, 2003, 19:103-117 [16] Sun M, Wu J H. Aerodynamic force generation and power requirements in forward flight in a fruit fly with modeled wing motion[J]. J Exp Biol, 2003, 206:3065-3083 [17] Dudley R. Biomechanics of flight in neotropical butterflies:aerodynamics and mechanical power requirements[J]. J Exp Biol, 1991, 159:335-357 [18] Dudley R, Ellington C P. Mechanics of foreward flight in bumblebees II:quasi-steady lift and power requirements[J]. J Exp Biol, 1990, 148:53-88
|
[1] | JIANG Y F,HE W X,LIU W Z,et al. Multi-ground station system-based link allocation strategy for satellite constellation[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(4):1224-1233 (in Chinese). doi: 10.13700/j.bh.1001-5965.2023.0177. |
[2] | GONG Wenchi, BAO Sheng, CHEN Ming, ZHANG Tong, WANG Chao. Study on characteristics of integrated power generation and refrigeration system[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2024.0852 |
[3] | TANG J M,HUANG J Q,WANG B W,et al. Resource optimization of multi UAV assisted communication system based on user scheduling[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(4):1143-1151 (in Chinese). doi: 10.13700/j.bh.1001-5965.2023.0241. |
[4] | GUO Chenyang, LIU Yi, LIU Haozheng, WANG Junjie, GAO Jingcheng, FENG Shiyu. Research on oxygen consumption based inerting monolithic catalyst reactor performance[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2023.0562 |
[5] | ZHOU D P,LI H Q,WANG Y G,et al. Aircraft system identification algorithm based on generalized equivalent model[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(5):1454-1462 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0507. |
[6] | LIU H T,LIU X C,HUANG J F,et al. Trajectory optimization of CSTBC UAV relay communication systems with no-fly zone constraints[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(3):729-738 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0351. |
[7] | LI X Y,WAN Z Q,WANG X Z,et al. Aeroelastic optimization for overall design of joined wing[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(12):3343-3354 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0074. |
[8] | WU Y,XIE C C,YANG C. Optimal design of shape and motion parameters of a flapping wing[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(12):3311-3320 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0146. |
[9] | SHAO L,PENG Y,LU X,et al. Optimization method for inlet and outlet of irregular fuel tank inerting system[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(10):2628-2634 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0768. |
[10] | LIU Hao, ZHENG Haoran, HUANG Rong. Region-hierarchical predictive coding for quantized block compressive sensing[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(8): 1376-1382. doi: 10.13700/j.bh.1001-5965.2021.0511 |
[11] | LI Zi-rong, YANG Yan-ping, ZHANG Zi-jian, MA Xiao-ping. Overall Design and Energy Efficiency Optimization for Communication-oriented Morphing Solar-powered UAV[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2022.0254 |
[12] | WANG Chenchen, PAN Jun, WANG Yangyang, DUAN Weijie. Effect of suction flow rate on performance of catalytic inerting system[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(7): 1183-1189. doi: 10.13700/j.bh.1001-5965.2021.0026 |
[13] | PEI Xinyu, LIU Baoju, DENG Min, WU Guohua, BAI Xue, HU Shuling. Dynamic collaborative planning method of earth observation resources based on contract network[J]. Journal of Beijing University of Aeronautics and Astronautics, 2020, 46(10): 1853-1862. doi: 10.13700/j.bh.1001-5965.2019.0554 |
[14] | JIANG Chenchen, HUO Hongtao, FENG Qi. An object-oriented multi-scale segmentation optimization algorithm based on PCA[J]. Journal of Beijing University of Aeronautics and Astronautics, 2020, 46(6): 1192-1203. doi: 10.13700/j.bh.1001-5965.2019.0398 |
[15] | SHI Xianjun, WANG Kang, XIAO Zhicai, LONG Yufeng, CHEN Yao. Three-dimensional Bayes network testability verification model for complex systems[J]. Journal of Beijing University of Aeronautics and Astronautics, 2019, 45(7): 1303-1313. doi: 10.13700/j.bh.1001-5965.2018.0663 |
[16] | Fu Jianping, Liu Bin. Object-driving software testability measurement[J]. Journal of Beijing University of Aeronautics and Astronautics, 2011, 37(12): 1569-1574. |
[17] | Shen Li, Shen Shituan. Modeling design of general purpose ATE[J]. Journal of Beijing University of Aeronautics and Astronautics, 2009, 35(7): 794-798. |
[18] | Han Qianpeng, Guo Li, Deng Jiati. Variable-fidelity optimization system for turbine blade preliminary design[J]. Journal of Beijing University of Aeronautics and Astronautics, 2007, 33(11): 1353-1357. |
[19] | Wang Baojiang, Huai Jinpeng, Xia Wanqiang. Design and Implementation of Modelbase and Algorithmbase Based on the Component Object Model[J]. Journal of Beijing University of Aeronautics and Astronautics, 1998, 24(4): 418-421. |
[20] | Zhao Tingdi. General Development Shell for Fault Diagnostic Expert System[J]. Journal of Beijing University of Aeronautics and Astronautics, 1998, 24(3): 358-361. |