Citation: | Sun Mao, Huang Hua. Biomimetic mechanics of micro-air vehicles ——the aerodynamic force of butterfly in forward flight[J]. Journal of Beijing University of Aeronautics and Astronautics, 2006, 32(10): 1146-1151. (in Chinese) |
[1] Weis-Fogh T. Quick estimates of flight fitness in hovering animals, including novel mechanism for lift production[J]. J Exp Biol, 1973, 59:169-230 [2] Ellington C P, Van den Berg C, Willmott A P. Leading edge vortices in insect flight[J]. Nature, 1996, 384:626-630 [3] Dickinson M H, Lehmann F O, Sane S P. Wing rotation and the aerodynamic basis of insect flight[J].Science, 1999, 284:1954-1960 [4] Sun M, Tang J. Unsteady aerodynamic force generation by a model fruit fly wing in flapping motion[J]. J Exp Biol, 2002, 205:55-70 [5] Dudley R. Biomechanics of flight in neotropical butterflies:morphometrics and kinematics[J]. J Exp Biol, 1990, 150:37-53 [6] Betts C R, Wootton R J. Wing shape and flight behaviour in butterflies (lepidoptera:papilionoidea and hesperioidea):a preliminary analysis[J]. J Exp Biol, 1988, 138:271-288 [7] Backenbury J H. Kinematics of take-off and climbing flight in butterflies[J]. J Zool, Lond, 1991, 224:251-270 [8] Brodsky A K. Vortex formation in the tethered flight of the peacock butterfly Inachis Io L (Lepidoptera, Nymphalidae) and some aspects of insect flight evolution[J]. J Exp Biol, 1991, 161:77-95 [9] Rogers S E, Kwak D. Upwind differencing scheme for the time-accurate incompressible Navier-Stokes equations[J]. AIAA Journal, 1990, 28:253-262 [10] Rogers S E, Kwak D, Kiris C. Steady and unsteady solutions of the incompressible Navier-Stokes equations[J]. AIAA Journal, 1991, 33:2066-2072 [11] Rogers S E. On the use of implicit line-relaxation and multi-zonal computations . AIAA-91-1611, 1991 [12] Rogers S E, Pulliam T H. Accuracy enhancements for overset grid methods for moving body problems . AIAA-94-0523, 1994 [13] Meakin R L. On the spatial and temporal accuracy of overset grid methods for moving body problems . AIAA-94-1925, 1994 [14] Sun M, Lan S L. A computational study of the aerodynamic forces and power requirements of dragonfly (Aeschna juncea) hovering[J]. J Exp Biol, 2004, 207:1887-1901 [15] Sun M, Yu X. Flows around two airfoils performing fling and subsequent translation and translation and subsequent clap[J]. Acta Mechanica, 2003, 19:103-117 [16] Sun M, Wu J H. Aerodynamic force generation and power requirements in forward flight in a fruit fly with modeled wing motion[J]. J Exp Biol, 2003, 206:3065-3083 [17] Dudley R. Biomechanics of flight in neotropical butterflies:aerodynamics and mechanical power requirements[J]. J Exp Biol, 1991, 159:335-357 [18] Dudley R, Ellington C P. Mechanics of foreward flight in bumblebees II:quasi-steady lift and power requirements[J]. J Exp Biol, 1990, 148:53-88
|
[1] | LI Yaohua, LIU Chuanzhao, PAN Min, GOU Yingqi, CHEN Jie. Aero-engine crack measurement based on improved YOLOv8n-seg cascade with digital image processing[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2024.0923 |
[2] | DENG J,GAO Z H,HUANG J T,et al. Optimization design method of aircraft boundary characteristics based on upwind scheme adjoint equation[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(1):281-292 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0964. |
[3] | LIANG J Z,PAN T Y,ZHENG M Z,et al. Model design and aerodynamic characteristic analysis of variable-amplitude flapping wing aircraft[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(5):1735-1746 (in Chinese). doi: 10.13700/j.bh.1001-5965.2023.0271. |
[4] | WANG Di, LUO Jianqiao, YU Ning, MENG Junhui. Dynamic Characteristics of Rotating Disk-shaped Vehicle during Skipping Considering Configuration[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2024.0288 |
[5] | HU Wenhua, LIU Wenju, WU Ruiqin, CHEN Sanya, FENG Jingjing, WU Xia. Model design and aerodynamic simulation of a fold-wing aircraft[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2024.0064 |
[6] | YUAN Y,LIU J,YU J Q,et al. Aerodynamic layout optimization design of high-speed folding-wing vehicles[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(11):3410-3416 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0849. |
[7] | CAO Mengda, ZHENG Mengzong, SU Guanting, PAN Tianyu, LI Zhiping, LI Qiushi. Study on the Unsteady Aerodynamic Characteristics of a Flexible Flapping Plate at Low Reynolds Numbers[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2024.0235 |
[8] | LIU Shenshen, JIANG Bo, HAN Qinghua, YU Jing, YANG Xiaofeng, WEI Dong, ZHU Yandan, GUI Yewei. Study of cumulative thermal deformation characteristics and its impacts under long-endurance aerodynamic-thermal coupling effects[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2023.0486 |
[9] | MA C,SHU B W,HUANG J T,et al. Knowledge mining of aircraft configuration design for sonic boom/aerodynamics[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(3):975-984 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0310. |
[10] | LI Z B,SUN W,ZHANG Y N,et al. Computation on aerodynamic and aeroacoustic characteristics of scissor tail-rotor under sideslip condition[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(12):3794-3805 (in Chinese). doi: 10.13700/j.bh.1001-5965.2023.0037. |
[11] | FAN B X,CHEN G M,CAO Y Q. Multi-objective optimization of aerodynamic layout for hypersonic reentry vehicle[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(7):1639-1650 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0566. |
[12] | LI Y C,LI Q H,ZHANG X S,et al. N-dot control method of turbofan engine based on active switching logic[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(11):3156-3166 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0022. |
[13] | ZHANG Y X,WANG X J,WANG S P,et al. Mechanism of butterfly forward flight and prototype verification based on characteristic motion observation[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(7):1651-1660 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0497. |
[14] | SHI Y,WAN Z Q,WU Z G,et al. Aerodynamic order reduction method for elastic aircraft flight dynamics simulation[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(7):1689-1706 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0510. |
[15] | HONG Zheng, YE Zhengyin. Numerical investigation on evolution of T-S wave on a two-dimensional compliant wall with finite length[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(7): 1190-1199. doi: 10.13700/j.bh.1001-5965.2021.0030 |
[16] | ZHANG Jie, WU Sentang. Dynamic modeling for a morphing aircraft and dynamic characteristics analysis[J]. Journal of Beijing University of Aeronautics and Astronautics, 2015, 41(1): 58-64. doi: 10.13700/j.bh.1001-5965.2014.0048 |
[17] | Mou Xiaolei, Sun Mao. Aerodynamics of hovering true hoverflies[J]. Journal of Beijing University of Aeronautics and Astronautics, 2012, (7): 925-930. |
[18] | Li Yibo, Ma Dongli, Niu Lingyu. Aerodynamic characteristic of canard rotor/wing aircraft in conversion[J]. Journal of Beijing University of Aeronautics and Astronautics, 2011, 37(3): 311-315. |
[19] | Mou Xiaolei, Sun Mao. Effects of wing planform on aerodynamics force production of stroking model insect wing[J]. Journal of Beijing University of Aeronautics and Astronautics, 2011, 37(11): 1359-1364,1371. |
[20] | Wang Tianmiao, Ma Wenkai, Liang Jianhong. Control of tail fin flaping of robofish[J]. Journal of Beijing University of Aeronautics and Astronautics, 2006, 32(10): 1157-1162. |