Volume 32 Issue 12
Dec.  2006
Turn off MathJax
Article Contents
Yao Lu, Li Zhenglong, Liu Honget al. Improve electricity generation of microbial fuel cells by low intensity ultrasound[J]. Journal of Beijing University of Aeronautics and Astronautics, 2006, 32(12): 1472-1476. (in Chinese)
Citation: Yao Lu, Li Zhenglong, Liu Honget al. Improve electricity generation of microbial fuel cells by low intensity ultrasound[J]. Journal of Beijing University of Aeronautics and Astronautics, 2006, 32(12): 1472-1476. (in Chinese)

Improve electricity generation of microbial fuel cells by low intensity ultrasound

  • Received Date: 15 May 2006
  • Publish Date: 31 Dec 2006
  • It is possible to produce electricity in microbial fuel cells(MFCs) while accomplishing biological wastewater treatment, but slow electron transference limits the development of MFCs. To improve the electricity generation, two similar single chambered MFCs were built, which had the available volume 1.5L, and each electrode area was 160cm2. One was irradiated by ultrasound, the other used as control. The MFCs was induced by ultrasound at 33kHz in 10min with the ultrasound intensities of 0.2W/cm2 every 83 hours. The result shows that in the end of the reaction(about 2880h), the maximum power density of the ultrasound treatment reactor increases by 6% comparing with that of the control, and the total coulomb increases by 46.5% in one reaction cycle. The ultrasound treatment reactor′s Coulombic efficiency(CE) is 25.7% higher than that of the control. Moreover, in the MFCs with ultrasound, the lowest pH of wastewater is lower than that in the control, and the lowest oxidation reduction potential(ORP) of reactor is lower by 34.8mV. In 3000min the two reactors′ removal rate of chemical oxygen demand(COD) all reaches to 72.9%. The ultrasound irradiation doesn′t increase the removal rate of COD obviously. The explanation of these differences was given according to the influence of low intensity ultrasound to the microorganisms.

     

  • loading
  • [1] 成都市科学技术学会科普知识大全.微生物燃料电池. http://www.cdkjx.com/web4/extensive/shownews.asp?newsid=730 [2] Liu Hong,Ramnarayanan R,Logan B. Production of electricity during wastewater treatment using a single chamber microbial fuel cell[J]. Environ Sci Technol,2004,38:2281-2285 [3] Willner I, Katz E. Integration of layered redox proteins and conductive supports for bioelectronic applications[J]. Angew Chem Int Ed,2000,39:1180-1184 [4] Wood B E, Aldrich H C, Ingram L O. Ultrasound stimulates ethanol production during the simultaneous scarification and fermentation of mixed waste office paper[J]. Biotechnol Prog,1997,13:232-237 [5] Schlafer O,Onyeche T,Bormann H,et al. Ultrasound stimulation of micro-organisms for enhanced biodegradation[J].Ultrasonics,2002, 40(1-8):25-29 [6] 刘红,何韵华,张山立,等. 微污染水源水处理中超声波强化生物降解有机污染物研究[J]. 环境科学,2004,25(3):57-60 Liu Hong,He Yunhua,Zhang Shanli,et al. Organic pollutants biodegradation in micro-polluted water enhanced by ultrasonic[J]. Environmental Science, 2004,25(3):57-60(in Chinese) [7] 刘红,闫怡新,王文燕,等. 低强度超声波改善污泥活性[J]. 环境科学,2005,26(4):124-128 Liu Hong, Yan Yixin, Wang Wenyan, et al. Improvement of the activity of activated sludge by low intensity ultrasound[J]. Environmental Science, 2005,26(4):124-128(in Chinese) [8] Liu H, Logan B E. Electricity generation using an air-cathode single chamber microbial fuel cell in the presence and absence of a proton exchange membrane. Environmental Science and Technology,2004,38:4040-4046 [9] 高廷耀,顾国维. 水污染控制工程(下册)[M]. 北京:高等教育出版社,1999:177-187 Gao Tingyao, Gu Guowei. Water pollution control engineering(second volume) [M]. Beijing:Higher Education Press,1999:177-187(in Chinese) [10] Min B, Kim J R, Logan B E. Electricity generation from swine wastewater using microbial fuel cells[J]. Water Research, 2005, 39:4961-4968 [11] Ieropoulos I A, Greenmana J, Melhuish C,et al. Comparative study of three types of microbial fuel cell[J]. Enzyme and Microbial Technology, 2005, 37:238-245 [12] Oh S E, Min B, Logan B E. Cathode performance as a factor in electricity generation in microbial fuel cells[J]. Environ Sci Technol,2004,38:4900-4904 [13] Liu H, Cheng S, Logan B E. Power generation in fed-batch microbial fuel cells as a function of ionic strength, temperature, and reactor configuration[J]. Environ Sci Technol,2005,39(14):5488-5493 [14] Marcus R A, Sutin N. Electron transfers in chemistry and biology[J]. Biochim Biophys Acta, 1985, 811(3):265-322 [15] Pitt W G, Ross S A. Ultrasound increases the rate of bacterial cell growth[J]. Biotechnol Prog, 2003,19(3):1038-1044 [16] 时兰春,王伯初,杨艳红,等. 低强度超声波在生物技术中应用的研究进展[J]. 重庆大学学报,2005,25(10):139-142 Shi Lanchun, Wang Bochu, Yang Yanhong, et al. Application of low intensity ultrasound to biotechnology[J]. Journal of Chongqing University, 2005, 25(10):139-142(in Chinese) [17] 戴传云,王伯初. 低功率超声波对微生物发酵的影响[J]. 重庆大学学报,2003,26(2):15-17 Dai Chuanyun, Wang Bochu. Effect of low energy ultrasonic on the microorganism fermentation[J]. Journal of Chongqing University,2003,26(2):15-17(in Chinese) [18] 李刚,杨立中,欧阳峰. 厌氧消化过程控制因素及pH和Eh的影响分析[J]. 西南交通大学学报,2001,10(5):2258-2272 Li Gang,Yang Lizhong,Ouyang Feng. Control factors of anaerobic digestion and effect of pH and Eh[J]. Journal of Southwest Jiaotong University, 2001,10(5):2258-2272(in Chinese) [19] 周洪波,Cord-Ruwisch R,陈坚. 产酸相中氧化还原电位控制及其对葡萄糖厌氧发酵产物的影响[J]. 中国沼气,2000,18(4):20-23 Zhou Hongbo,Cord-Ruwisch R,Chen Jian. The strategy of redox potential control and its influence on anaerobic fermentation of glucose in acidogenic reactor[J].China Biogas, 2000,18(4):20-23(in Chinese)
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views(3106) PDF downloads(1081) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return