Gao Yushan, Chen Ze, Li Mao, et al. Experiment and simulation of impinging coaxial gas-gas injector[J]. Journal of Beijing University of Aeronautics and Astronautics, 2011, 37(8): 923-926. (in Chinese)
Citation: He Jun, Zhao Jingquan, Yuan Xiuganet al. Entropy generation minimization analysis for aircraft environmental control system optimal design[J]. Journal of Beijing University of Aeronautics and Astronautics, 2006, 32(09): 1007-1010. (in Chinese)

Entropy generation minimization analysis for aircraft environmental control system optimal design

  • Received Date: 28 Nov 2005
  • Publish Date: 30 Sep 2006
  • A new method bases on the second law of thermodynamics for entropy generation minimization analysis and thermodynamic optimization in the research and design of aircraft environmental control system (ECS). The chosen example is a military aircraft ECS with an air cycle machine (ACM) and a counter-flow heat exchanger. The effect of some design features for ECS entropy generation was discussed, such as the efficiency of heat exchanger and turbine in ACM, the air steam pressure and temperature of bleed from air-fighter engine compressor, and the air temperature of delivery to the cabin and comfort the pilot. Numerical results show that the temperature of the air stream that the ECS delivers to the cabin can be optimized for system operation at minimal entropy generation, when the components geometry parameters are fixed. The method illustrated is applicable to more complex and realistic aircraft environmental control systems.

     

  • [1] Moran Michael J. Availability analysis:a guide to efficient energy use[M]. New Jersey:Prentice-Hall, 1982 [2] Bejan Adrian, Siems David L. The need for exergy analysis and thermodynamic optimization in aircraft development [J]. Exergy, 2001, 1(1):14-24 [3] Figliola R S, Tipton Robert. An exergy-based methodology for decision-based design of integrated aircraft thermal systems . AIAA 2000-01-5527, 2000 [4] Vargas Jose V C, Bejan Adrian. Thermodynamic optimization of finned crossflow heat exchangers for aircraft environmental control system [J]. International Journal of Heat and Fluid Flow, 2001, 22(2):657-665 [5] Isabel Perez-Grande, Teresa J Leo. Optimization of a commercial aircraft environmental control system [J]. Applied Thermal Engineering, 2002, 22(4):1885-1904
  • Relative Articles

    [1]ZHU X Q,WANG T,RUAN X G,et al. Gait learning method of quadruped robot based on policy distillation[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(2):428-439 (in Chinese). doi: 10.13700/j.bh.1001-5965.2023.0069.
    [2]ZHANG Luheng, WANG Wenyu, DING Dandan. A Hierarchical Rate Control Method for End-to-End Image Compression[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2024.0461
    [3]DUAN Leqiang, LI Lei, WANG Weijie, ZHU Hongye, PANG Weikun, REN Yuan. Dynamics Modeling and Active disturbance rejection control of Magnetically Suspended Universally Stabilized Platform[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2024.0065
    [4]WANG L F,ZOU T,REN Y,et al. Fine alignment method for biaxial redundant rotating inertial navigation system[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(11):3348-3357 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0818.
    [5]LU L Z,LIU W,ZHANG H. Guidance and control method of levitation experiment facility inside China’s Space Station[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(9):2930-2938 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0738.
    [6]DONG J C,GAO Q H,LIU Z H. Planar motion control of distributed-driven vehicles considering dynamic hysteresis[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(12):3842-3853 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0887.
    [7]HU Dandan, ZHAO Jinju, NIU Guochen. Active obstacle avoidance based on improved dynamic window approach for off-axis full-trailer vehicles[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2024.0404
    [8]TAN J F,XING X B,CUI Z,et al. Investigation on aerodynamics of a helicopter approaching an active control deck[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(7):2206-2217 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0615.
    [9]FENG Yu-xuan, HUO Ying-yuan, LI Jun-jie. Design of multiple-input/multiple-output control law for active flutter suppression of flying-wing aircraft[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2024.0144
    [11]HAN F Q,ZHANG D Y. Ultrasonic longitudinal torsional and low frequency torsional compound vibration tapping experiment[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(4):1077-1084 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0453.
    [12]WANG T H,WANG Y R,WEI D S. Time-domain random vibration analysis method of pipeline based on time-frequency conversion[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(11):3495-3506 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0859.
    [13]LEI Chao-hui, YANG Chao, SONG Chen. Optimization design of active aeroelastic wing with variable camber[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2023.0623
    [14]PENG Yu-xiao, HE Zhen, CHOU Jing-wen. Active Deformation Decision-Making for a Four-wing Variable Sweep Aircraft based on LSTM-DDPG Algorithm[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2023.0513
    [15]TANG Y C,ZHU Q H,LIU F C,et al. Design of robust controller for single outrigger of vibration active isolation platform based on LPV[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(7):1796-1801 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0513.
    [16]CHEN Z L,LU Z X,XIAO T H,et al. Effect of local oscillation on aerodynamics of thin airfoil in Mars environment[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(11):2938-2950 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0032.
    [17]DONG Q,CHENG S F,ZHANG X M,et al. Vibration response of asphalt concrete pavement under vehicle-road coupled load[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(9):2385-2394 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0654.
    [18]LI Y C,LI Q H,ZHANG X S,et al. N-dot control method of turbofan engine based on active switching logic[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(11):3156-3166 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0022.
    [19]ZHANG X C,WAN Z Q,YAN D. Optimal active twist control for rotor vibration reduction[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(12):3397-3408 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0105.
    [20]ZHANG Libo, LI Yupeng, ZHU Deming, FU Yongling. Inverse kinematic solution of nursing robot based on genetic algorithm[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(10): 1925-1932. doi: 10.13700/j.bh.1001-5965.2021.0042
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views(3442) PDF downloads(883) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return