Li Dong, Cao Yihua, Su Yuan, et al. Trajectory planning for low attitude penetration based on improved ant colony algorithm[J]. Journal of Beijing University of Aeronautics and Astronautics, 2006, 32(03): 258-262. (in Chinese)
Citation: Wan Zhiqiang, Yang Chao. Application of design sensitivity in aeroelastic genetic optimization[J]. Journal of Beijing University of Aeronautics and Astronautics, 2006, 32(05): 508-512. (in Chinese)

Application of design sensitivity in aeroelastic genetic optimization

  • Received Date: 03 Jun 2005
  • Publish Date: 31 May 2006
  • A design study aimed to optimize a composite wing in an aeroelastic way was presented using genetic algorithm and genetic/sensitivity-based hybridalgorithm. In order to increase the search efficiency of the above-mentioned two algorithms, a set of methods was put forward to fix primary and secondary design variables followed by adjusting the design variable domain on the basis of design variable importance in terms of their sensitivity. Results demonstrate that the size of design variable domain had direct effects on the search efficiency of genetic algorithm and genetic/sensitivity-based hybrid algorithm, especially when the former was used. Therefore, the search space should be reduced to be as small as possible if an enough amount of excellent feasible solutions in design space could be ensured. Results indicate that the method to adjust the size of design variable domain on the basis of sensitivity has proved to be of fairly practical success, which can not only remarkably increase the search efficiency of genetic algorithm and genetic/sensitivity-based algorithm, but also strengthen the capability of the two algorithms to discriminate the feasible field.

     

  • [1] Wan Zhiqiang, Yang Chao, Zou Congqing. Design studies of aeroelastic tailoring of forward-swept composite aircraft using hybrid genetic algorithm . AIAA Paper 2003-1491, 2003 [2] 万志强, 杨超, 郦正能. 混合遗传算法在气动弹性多学科优化中的作用 . 北京航空航天大学 报, 2004, 30(12):1142-1146 Wan Zhiqiang, Yang Chao, Li Zhengneng. Application of hybrid genetic algorithm in aeroelastic multidisciplinary optimization[J]. Journal of Beijing University of Aeronautics and Astronautics, 2004, 30(12):1142-1146(in Chinese) [3] Holland J H. Adaptation in natural and artificial systems[M]. Ann Arbor:University of Michigan Press, 1975:183 [4] Rodden W P, Johnson E H. MSC/Nastran aeroelastic analysis user's guide V68[M]. Log Angeles:MSC Corporation, 1994:657-698
  • Relative Articles

    [1]LI L Y,YANG R N,WANG Y,et al. CAP planning method based on elliptic fitting of optimal detection routes[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(1):293-302 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0978.
    [2]ZHAO Guiling, WANG Jinbao, WANG Yuan. A SINS/GNSS fault detection and robustness adaptive algorithm based on maximum smooth bounded layer width[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2024.0777
    [3]LIU Weijie, QIN Jianhua, YAN Cheng, MA Liebo, WANG Liang. Research on anti attack angle disturbance control of subsonic and transonic Mach number in wind tunnel[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2024.0694
    [4]YU H F,GUO Y Q,WANG J M. Mode transition control of over-under TBCC under variable Mach number[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(11):3456-3462 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0827.
    [5]CHEN B,LUO L,JIANG A L,et al. Numerical simulation of separation characteristics for internally buried weapon at high Mach number[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(7):2113-2122 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0627.
    [6]CAO Mengda, ZHENG Mengzong, SU Guanting, PAN Tianyu, LI Zhiping, LI Qiushi. Study on the Unsteady Aerodynamic Characteristics of a Flexible Flapping Plate at Low Reynolds Numbers[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2024.0235
    [7]ZOU L,WU W N,LIU J,et al. Numerical simulation of flow around two tandem wavy conical cylinders at subcritical Reynolds number[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(3):706-715 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0285.
    [8]WU Z Y,GAO Z X,CHEN X M,et al. Mach number effect in shock-wave/turbulent-boundary-layer interaction flow[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(11):3484-3494 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0857.
    [9]ZHAO Jin-peng, CENG Wei, MA Hai-teng. Method for determining Stanton number on the blunt body in supersonic flow[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2023.0800
    [10]FU J J,XU Y,ZHOU X M,et al. Topological optimization method for conformal cellular structures on surfaces based on co-simulation[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(9):2781-2790 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0751.
    [11]HU Jing-chen, ZHENG Guo-lei. Geometric cognitive computing method for surface iso-segmentation[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2023.0593
    [12]YOU Z Y,HU G P,ZHOU H,et al. Joint DOA and DOD estimation of bistatic MIMO radar coherent targets based on smoothing matrix sets optimization[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(1):268-275 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0173.
    [13]GONG H,NI C,WANG P,et al. A smooth path planning method based on Dijkstra algorithm[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(2):535-541 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0377.
    [14]LI M H,JIN S,DU Y. Adversarial attack method based on loss smoothing[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(2):663-670 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0478.
    [15]ZHANG P H,CHEN H Y,ZHANG J,et al. Passive flow control for weapon bay at high Mach number[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(11):2913-2920 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0790.
    [16]ZHANG P H,TANG Y,TANG J,et al. Simulation of cavity flow at high Mach number based on adaptive unstructured hybrid mesh[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(6):1311-1318 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0424.
    [17]ZHANG P H,CHENG X H,CHEN H Y,et al. Unsteady flow mechanism of high Mach number cavity[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(8):1940-1947 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0609.
    [18]ZHOU K,CHEN W J,CHEN W H,et al. Extended subtraction speech enhancement based on cubic spline interpolation[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(10):2826-2834 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0744.
    [19]XU X Y,YAN G R,LEI Y. Surface quality optimization based on mutative scale chaos algorithm[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(12):3328-3334 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0070.
    [20]QIAN Depei, LUAN Zhongzhi, LIU Yi. From grid to "East-west Computing Transfer" : Constructing national computing infrastructure[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(9): 1561-1574. doi: 10.13700/j.bh.1001-5965.2022.0715
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views(2984) PDF downloads(819) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return