Yin Yongfeng, Liu Bin, Wang Chenet al. Execution engine for real-time embedded software test -design and realization[J]. Journal of Beijing University of Aeronautics and Astronautics, 2010, 36(6): 723-727. (in Chinese)
Citation: Ma Lun, Liao Guisheng. Novel autofocus algorithm based on DCT for SAR images[J]. Journal of Beijing University of Aeronautics and Astronautics, 2006, 32(04): 417-420. (in Chinese)

Novel autofocus algorithm based on DCT for SAR images

  • Received Date: 11 Apr 2005
  • Publish Date: 30 Apr 2006
  • A novel autofocus algorithm for SAR(synthetic aperture radar) images is presented, which is based on DCT(discrete cosine transform). The method, which starts with complex phase-degraded SAR image, after phase errors model is introduced into the range-compressed phase-history domain, carries out phase errors correction by changing the focus until the intensity of the weight function of the azimuth profile in the area of high sequencies is maximized. Compared with the PGA autofocus algorithm, this autofocus algorithm needs not isolate prominent point target in image domain and is especially suitable for the images without specific characteristic. This autofocus algorithm is of less computational complexity and easy to implement, because there are fast algorithms for DCT. The simulation and the processing results of the measured data show the validity of the proposed method.

     

  • [1] Li F K, Held D N, Curlander J, et al. Doppler parameter estimation for spaceborne synthetic aperture radar[J].IEEE Trans on GRS, 1985, 23(1):47~56 [2] Wahl D E, Eichel P H, Ghiglia D C, et al. Phase gradient autofocus—a robust tool for high resolution SAR phase correction[J]. IEEE Trans on AES, 1994, 30(3):827~835 [3] 武昕伟,朱兆达.一种基于最小熵准则的SAR图像自聚焦算法[J].系统工程与电子技术,2003, 25(7):865~869 Wu Xinwei, Zhu Zhaoda. A novel autofocus algorithm based on minimum entropy criteria for SAR images[J]. Systems Engineering and Electronics, 2003, 25(7):865~869(in Chinese) [4] Charfi M, Nyeck A, Tosser A. Focusing criterion[J]. IEEE Electronics Letters, 1991,27(14):1233~1235 [5] Ahmed N T, Natarajan, Rao K R. Discrete cosine transform[J]. IEEE Trans on Computer, 1974,23(1):90~93. [6] Rao K R, Yip P. Discrete cosine transform:algorithms, advantages, applications[M]. New York:Academic Press,1990 [7] 奥本海姆A V, 谢弗R W, 巴克J B. 离散时间信号处理[M].第二版.西安:西安交通大学出版社, 2001. 474~483 Oppenheim A V, Schafer R W, Buck J R. Discrete-time signal processing[M]. 2nd. Xi’an:Xi’an Jiaotong University Press, 2001.474~483(in Chinese) [8] 张澄波.综合孔径雷达原理、系统分析与应用[M].北京:科学出版社,1989. 163~178 Zhang Chengbo.Synthetic aperture radar theory, system analysis and applications[M].Beijing:Science Press, 1989. 163~178(in Chinese)
  • Relative Articles

    [1]CHEN Q,AN C,XIE C C,et al. Large deformation prediction and geometric nonlinear aeroelastic analysis based on machine learning algorithm[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(3):943-952 (in Chinese). doi: 10.13700/j.bh.1001-5965.2023.0111.
    [2]CAO T T,YANG Y X,YU L F,et al. Whirl flutter on distributed electric propeller aircraft[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(8):2627-2635 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0684.
    [3]LI Z B,SUN W,ZHANG Y N,et al. Computation on aerodynamic and aeroacoustic characteristics of scissor tail-rotor under sideslip condition[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(12):3794-3805 (in Chinese). doi: 10.13700/j.bh.1001-5965.2023.0037.
    [4]ZHANG Xu, ZHAO Rui, LI Yu, YANG Guang, WANG Li-yan. Component of gas-injection effects on wall heat flux and skin-friction of vehicles[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2024.0009
    [5]YUAN Kaihua, ZHANG Zhuoge, ZHA Jun, CHENG Meng, JI Hongli, LIU Kai, TIAN Haitao. WIND TUNNEL TEST FOR AEROELASTIC DYNAMIC RESPONSE SUPRESSION OF SUPERSONIC PANEL[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2024.0602
    [6]LI Keyu, YANG Chao, WANG Xiaozhe, WAN Zhiqiang, LI Chang. Aeroelastic optimization of wing structure and material using multiple microstructures[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2024.0178
    [7]LI Hao, ZHANG Xiao-rong, SUN Yan, DENG Yan-zeng, ZHU Zhi-mao. Automatic selection algorithm of interpolation points on aeroelastic coupling interface[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2024.0079
    [8]XU H,HAN J L,XI Y,et al. Aeroelastic morphing flight simulation platform for a folding wing aircraft[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(6):1921-1930 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0536.
    [9]ZHANG Z,WANG P,ZHOU H Y. Reliability analysis of nozzle adjustment mechanism with interval distribution parameters[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(12):3377-3385 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0089.
    [10]SUN Y K,WANG L,WANG T G,et al. Optimization method for tail rotor airfoil based on SST adjoint turbulence model[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(12):3355-3364 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0086.
    [11]ZOU Xu, LIU Zhen-bao, ZHAO Wen, WANG Li-na. Optimization method of transition trajectory for tail-sitter unmanned aerial vehicles[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2023.0458
    [12]WANG S Y,ZHANG J,YANG L Y. Attitude control law based on L1-ITD for a tail-sitter UAV[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(9):2501-2509 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0681.
    [13]XU Y T,TAN D L,YANG C. Study on tail-slap load characteristics of high-speed projectile based on CFD/CSD coupling[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(9):2539-2546 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0939.
    [14]FENG Y W,ZHANG J L,XUE X F,et al. Structural design and analysis of leading edge slat interference trailing edge[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(4):761-767 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0353.
    [15]LEI Chao-hui, YANG Chao, SONG Chen. Optimization design of active aeroelastic wing with variable camber[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2023.0623
    [16]ZHOU Quan-zhi, YANG You-xu, SUN Lu-bin, ZHANG Xing-cui, WU Yi-fei, HUO Meng-wen. Aeroelastic Optimization Design of SpaRibs Wing Structure[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2023.0343
    [17]LI Y,ZONG H H,CAI J,et al. Hydroplaning behavior of aircraft wheel group and additional resistance due to accumulated water on pavement[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(5):1099-1107 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0402.
    [18]LI X Y,WAN Z Q,WANG X Z,et al. Aeroelastic optimization for overall design of joined wing[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(12):3343-3354 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0074.
    [19]YANG Lan, AN Chao, XIE Changchuan, YANG Chao. Gust load alleviation analysis based on vortex lattice method in state-space form[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(7): 1200-1209. doi: 10.13700/j.bh.1001-5965.2021.0023
    [20]LI Yongchang, DAI Yuting, YANG Chao. Fluid and structure coupling analysis of split drag rudder[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(12): 2494-2501. doi: 10.13700/j.bh.1001-5965.2021.0151
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views(2595) PDF downloads(858) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return