Zhang Jinbai, Zheng Zhaohu. Direct numerical simulation of turbulent channel flow of polymer solution[J]. Journal of Beijing University of Aeronautics and Astronautics, 2009, 35(12): 1417-1420. (in Chinese)
Citation: Zhou Shengqiang, Xiang Jinwu. Hopfield network based approach to aircraft design[J]. Journal of Beijing University of Aeronautics and Astronautics, 2006, 32(06): 675-679. (in Chinese)

Hopfield network based approach to aircraft design

  • Received Date: 20 Jun 2005
  • Publish Date: 30 Jun 2006
  • Combining augmented lagrange multiplier(ALM) method to Hopfield neural network(HNN), was proposed to solve nonlinear constrained optimization. HNNis taken as a dynamic approach for minimization subproblem in ALM method, only needing the first derivative of the Lagrange function. The random neural network was extended by adding Gaussian noise gradually reducing with the temperature, whose ablity escapeing from the attraction of the localminimum points was limitedby the initial temperature. Combined with the simulated annealing, an improved algorithm for Euler method was presented for numerical implementation of the network. The approach was applied to jet trainer aircraft preliminary optimization. The results show that the computing process is stable and the optimal result is enough precise. The trade-off of design requirements was studied through the Lagrange multipliers. An aerodynamic/structural design optimization for the wing of a trunkeliner was studied.

     

  • [1] Tsirukis A G, Reklaitis G V. Nonlinear optimization using generalized Hopfield networks[J].Neural Computing and Applications, 1989,1:511-521 [2] Dhingra A K, Rao S S. A neural network based approach to mechanical design optimization[J].Engineering Optimization, 1992,20:187-203 [3] 吴剑国,赵丽萍.工程结构优化的神经网络方法[J].计算力学学报 ,1998,15(1):69-74 Wu Jianguo,Zhao Liping. Neural network method for structural engineering optimization[J].Chinese Journal of Computational Mechnaics, 1998,15(1):69-74(in Chinese) [4] 丛爽,王怡雯.随机神经网络发展现状综述[J].控制理论与应用,2004,21(6):975-980 Cong Shuang, Wang Yiwen. Survey of current progress in random neural network .Control Theory & Applications, 2004, 21(6) :975-980(in Chinese) [5] 石晓荣,张明廉.一种基于混沌神经网络的拟人智能控制方法[J].北京航空航天大学学报,2004, 30(9):879-892 Shi Xiaorong,Zhang Minglian. Human-imitating control based on chaotic neural networks[J]. Journal of Beijing University of Aeronautics and Astronautics, 2004,30(9):879-892(in Chinese) [6] 叶世伟,郑宏伟,王文杰,等.连续时间Hopfield网络模型数值实现分析 .软件学报,2004,15(6):881-890 Ye Shiwei,Zheng Hongwei,Wang Wenjie, et al. Analysis for numerical implementation of continuous time Hopfield network model[J]. Journal of Software, 2004,15(6):881-890(in Chinese) [7] 方卫国,郦正能.基于全局敏度方程方法的飞机方案优化设计[J].航空学报,1998,19(3):293-298 Fang Weiguo,Li Zhengneng. Aircraft scheme optimization design based on global sensitivity equation method[J]. Acta Aeronautica et Astronautica Sinica,1998,19(3):293-298(in Chinese) [8] 董波,张晓东,郦正能.干线客机机翼气动/结构综合设计研究[J].北京航空航天大学学报,2002, 28(4):435-437 Dong Bo, Zhang Xiaodong, Li Zhengneng. Integrated aerodynamic/structural design optimization for wing of trunkliner[J]. Journal of Beijing University of Aeronautics and Astronautics,2002, 28(4):435-437(in Chinese)
  • Relative Articles

    [1]SUN X M,MA X,LIU Y,et al. Adaptive sliding mode region reaching control for uncertain nonlinear systems[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(8):2482-2491 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0647.
    [2]WEI Zhiqiang, XIAO Xinlong. Vertiport operational task planning model and capacity estimation method[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2024.0249
    [3]CHANG Z N,HU M H,ZHANG Y,et al. A multi-objective optimal control trajectory optimization method for aircraft under wind influence[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(11):3521-3531 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0836.
    [4]BAI F C,YANG X X,DENG X L,et al. Station keeping control for aerostat in wind fields based on deep reinforcement learning[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(7):2354-2366 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0629.
    [5]KONG Lingwei, LI Weiqi. Optimization of aircraft speed vector control based on Hp adaptive Pseudo-spectral method[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2024.0405
    [6]WANG H B,HE H,ZOU H J,et al. Nonlinear backstepping control of special EHA for rail grinding vehicles[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(8):2439-2448 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0681.
    [7]QUAN Q,CHEN L. Control of non-affine nonlinear systems: A survey[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(8):2367-2381 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0642.
    [8]TIAN Xinyu, WANG Shaoping, WANG Xingjian, ZHANG Yuwei, WEI Yi. Ankle prosthesis control method inspired by central pattern generator[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2024.0665
    [9]CHANG Jiaming, LI Sulan, DUAN Xuechao, ZHANG Wei, WANG Chenyang. Anti-stochastic disturbance control of airship[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2024.0489
    [10]ZHEN X D,WANG Z A,HU R C,et al. Aircraft flight qualities of short take-off and vertical landing[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(5):1576-1585 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0413.
    [11]LIN Junting, CHEN Xinzhou. Sliding mode control of magnetic levitation ball systems based on high-gain disturbance observer[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2024.0518
    [12]SU Zi-kang, CHEN Jia, LI Xue-bing, LI Chun-tao. Coordinated Control of Transition Flight Position and Attitude for Quad Tilt-Rotor UAV[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2023.0622
    [13]HE Xiongfeng, LU Wei, XU Nuo, ZHOU Qixian, WANG Pengcheng, ZHANG Yonghe. Disturbance Rejection Model Predictive Control for Building Drag-free Steady State[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2024.0380
    [14]MENG Z P,YANG L Q,WANG B,et al. ADRC design for folding wing vehicles based on improved equilibrium optimization algorithm[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(8):2449-2460 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0698.
    [15]DUAN Leqiang, LI Lei, WANG Weijie, ZHU Hongye, PANG Weikun, REN Yuan. Dynamics Modeling and Active disturbance rejection control of Magnetically Suspended Universally Stabilized Platform[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2024.0065
    [16]WEI Kun-yu, LI Chen-di, LI Bo-wen, YUAN Yuan, HE Xiao-fan. Research on Developing Design Gust Load Spectrum for Bomber-Mounted Air-to-Ground Missiles[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2024.0126
    [17]DENG B H,XU J F. Active disturbance rejection control of attitude of compound unmanned helicopter[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(11):3100-3107 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0788.
    [18]CUI K K,HAN W,LIU Y J,et al. Automatic wave-off control algorithm for carrier aircraft based on DM-DSC[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(4):900-912 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0362.
    [19]XIA L C,WANG S Y,ZHANG J,et al. Bi-bandwidth extended state observer based disturbance rejection control method and its application on UAV[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(5):1201-1208 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0411.
    [20]YIN Zengyuan, CAI Yuanwen, REN Yuan, WANG Weijie, CHEN Xiaocen, YU Chunmiao. Decoupled active disturbance rejection control method for magnetically suspended rotor based on state feedback[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(7): 1210-1221. doi: 10.13700/j.bh.1001-5965.2021.0021
  • Cited by

    Periodical cited type(2)

    1. Yunlong Hu,Jia Song,Mian Wu. A Review of Control Methods for Tailless Aircraft. Guidance, Navigation and Control. 2024(04): 5-36 .
    2. 刘亮,陶呈纲,薛艺璇,甄子洋,曹红波. 基于增量动态逆的V/STOL飞机悬停段控制. 飞行力学. 2022(04): 27-33 .

    Other cited types(2)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-040510152025
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 11.2 %FULLTEXT: 11.2 %META: 86.1 %META: 86.1 %PDF: 2.7 %PDF: 2.7 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 8.3 %其他: 8.3 %China: 0.3 %China: 0.3 %Seattle: 0.5 %Seattle: 0.5 %上海: 0.5 %上海: 0.5 %东京: 0.3 %东京: 0.3 %元朗新墟: 0.8 %元朗新墟: 0.8 %北京: 4.5 %北京: 4.5 %十堰: 0.5 %十堰: 0.5 %南京: 0.5 %南京: 0.5 %厦门: 0.5 %厦门: 0.5 %唐山: 0.5 %唐山: 0.5 %嘉兴: 0.3 %嘉兴: 0.3 %天津: 0.8 %天津: 0.8 %宣城: 0.3 %宣城: 0.3 %常州: 0.3 %常州: 0.3 %库比蒂诺: 0.3 %库比蒂诺: 0.3 %廊坊: 0.3 %廊坊: 0.3 %昆明: 0.5 %昆明: 0.5 %朝阳: 0.3 %朝阳: 0.3 %武汉: 0.3 %武汉: 0.3 %深圳: 9.9 %深圳: 9.9 %湘潭: 0.3 %湘潭: 0.3 %漯河: 1.9 %漯河: 1.9 %石家庄: 0.8 %石家庄: 0.8 %芒廷维尤: 20.3 %芒廷维尤: 20.3 %芝加哥: 0.3 %芝加哥: 0.3 %西宁: 42.0 %西宁: 42.0 %西安: 0.5 %西安: 0.5 %运城: 0.3 %运城: 0.3 %郑州: 1.9 %郑州: 1.9 %长沙: 0.8 %长沙: 0.8 %青岛: 0.5 %青岛: 0.5 %其他ChinaSeattle上海东京元朗新墟北京十堰南京厦门唐山嘉兴天津宣城常州库比蒂诺廊坊昆明朝阳武汉深圳湘潭漯河石家庄芒廷维尤芝加哥西宁西安运城郑州长沙青岛

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views(2901) PDF downloads(734) Cited by(4)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return