Gao Haidong, Yang Min, Wei Dongbo, et al. Detector pose measurement and correction methods for FPD-based cone-beam XCT system[J]. Journal of Beijing University of Aeronautics and Astronautics, 2012, 38(12): 1657-1660. (in Chinese)
Citation: Chen Yi, Li Shu. Application of improved threshold denoising based on wavelet transform to ultrasonic signal processing[J]. Journal of Beijing University of Aeronautics and Astronautics, 2006, 32(04): 466-470. (in Chinese)

Application of improved threshold denoising based on wavelet transform to ultrasonic signal processing

  • Received Date: 13 Apr 2005
  • Publish Date: 30 Apr 2006
  • The signal to noise ratio of ultrasonic echoes signal was low, the echoes signal was submerged easily in ultrasonic testing, and wavelet transforms was an effective method by which the flaw echoes can be extracted. The mathematics model of ultrasonic echoes signal was established, including the flaw echoes and the noise, the traditional soft and hard threshold denoising methods based on wavelet transform was ameliorated, and a middle course method was put forward for signal denoising in ultrasonic testing. At the same time the parameters selection was also optimized with the signal to noise ratio of ultrasonic flaw echoes signal as object function. The simulation experimental results showed that this method was fit for analyzing ultrasonic signal, and it can depress noises well. This method utilized the advantage of the soft and hard threshold denoising methods and avoided their disadvantage in the farthest. Compare to the traditional soft and hard threshold denoising methods, the denoising effect was improved in a certain extent, and the signal to noise ratio of ultrasonic flaw echoes signal was improved by using this method.

     

  • [1] 崔锦泰. 小波分析导论[M]. 西安:西安交通大学出版社, 1995 Cui Jintai. Conspectus of wavelet analysis[M]. Xi’an:Xi’an Jiaotong University Press, 1995(in Chinese) [2] Mallat S. A theory for multiresolution signal decomposition:the wavelet representation[J]. IEEE Trans Pattern Anal and Machine Intell, 1989, 11(7):647~693 [3] Gustafsson M G, Stepinski T. Split spectrum algorithms rely on instantaneous phase information—a geometrical approach[J]. IEEE Trans UFFC, 1993, 40(6):659~665 [4] 张广明. 超声无损检测中的时频分析理论及应用研究 . 西安:西安交通大学机械工程学院, 1999 Zhang Guangming. The theory and application research of time-frequency analysis in ultrasonic nondestructive evaluation . Xi’an:School of Mechanical Engineering, Xi’an Jiaotong University, 1999(in Chinese) [5] Mallat S, Hwang W L. Singularity detection and processing with wavelets[J]. IEEE Trans on Information Theory, 1992, 38(2):617~643 [6] 范 中. 利用子波变换检测瞬时信号[J]. 电子学报, 1996, 24(1):79~82 Fan Zhong. Detect instantaneous signals using wavelet transform[J]. Journal of Electron, 1996, 24(1):79~82(in Chinese) [7] Donoho D L, Johnstone I M. Ideal spatial adaption by wavelet shrinkage[J]. Biometrika, 1994, 81:425~455 [8] Donoho D L, Johnstone I M. Adapting to unknown smoothness via wavelet shrinkage[J]. Journal of the American Statistical Association, 1995, 90:1200~ 1224
  • Relative Articles

    [1]ZHAO H L,BAI L D. Remaining life prediction of engine by improved similarity with interval partition[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(10):3005-3012 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0762.
    [2]YU Y B,HE Z Q,HE X F,et al. Rotating bending fatigue life prediction of bearing steel based on damage mechanics[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(8):2585-2594 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0639.
    [3]ZHANG Luyihang, YANG Yanming, CHEN Yongzhan, LI Junliang, DAI Haomin. Remaining Useful Life life prediction of variable-operating turbofan engine based on VMD-CNN-BiLSTM[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2021.0051
    [4]YANG J X,TANG S J,LI L,et al. Remaining useful life prediction based on implicit nonlinear Wiener degradation process[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(1):328-340 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0243.
    [5]TIAN Gui-shuang, WANG Shao-ping, SHI Jian. Reliability model and lifetime prediction for train traction system considering multiple dependent components[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2023.0797
    [6]YANG Yisong, LI Jianbo, DUAN Dengyan. Dynamic model of high confidence tilt-hinge rotor based on Newton-Euler recurrence method[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2024.0230
    [8]CHEN Jia-jun, LI Xiang, SONG Yan-song, DONG Xiao-na. Real-time tracking of infrared dim-small target with multi-feature adaptive fusion under double confidence[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2023.0802
    [9]HUO Jiuyuan, LI Xin, CHANG Chen, LI Yufeng, ZHANG Yaonan. Roll bearing life prediction based on multi-scale feature fusion[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2024.0161
    [10]ZHANG Zhihao, DU Lixia, HAO Ziwei, HOU Yue. Multi-core contextual feature-guided algorithm for trusted detection of UAV aerial images[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2024.0548
    [11]LI X Q,ZHANG H G,WANG S,et al. Development and experimental of friction tester for aluminum alloy sheet stamping[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(6):1898-1910 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0542.
    [12]LI Q,WANG Y K,JIA Y H. Test study on wing rock in Herbst maneuver[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(5):1083-1098 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0375.
    [13]ZHAO Yu-yu, SUO Chao, WANG Yu-xiao. BSVAR-based remaining useful life prediction for aircraft engines[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2023.0643
    [14]WANG K,GUO Y Q,ZHAO W L,et al. Remaining useful life prediction of aeroengine based on SSAE and similarity matching[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(10):2817-2825 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0741.
    [15]LEI J Y,LEI Q N,LI H B,et al. A mesh parameterization method and life reliability-based optimization for turbine blade[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(10):2651-2659 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0708.
    [16]JI Na, LIU Juan, WANG Haoran, GAO Rui, LU Yonglai, LI Fanzhu. Simulation analysis and experimental study on stiffness and fatigue life fluctuation of the rubber bearing for heavy trucks[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2023.0263
    [17]ZHOU Z T,LIU L,SONG X,et al. Remaining useful life prediction method of rolling bearing based on Transformer model[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(2):430-443 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0247.
    [18]WANG F F,TANG S J,SUN X Y,et al. Remaining useful life prediction based on multi source information with considering random effects[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(11):3075-3085 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0782.
    [19]BI Y P,ZHANG T,HE Y T,et al. Corrosion and fatigue life prediction of aircraft typical lap structures based on life envelope[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(8):2200-2206 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0604.
    [20]FENG Jianguang, ZHENG Zixia, LONG Dongteng, ZHOU Bo, LU Mingquan, ZHENG Heng. Method for predicting on-orbit residual life of satellite atomic clock[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(11): 2215-2221. doi: 10.13700/j.bh.1001-5965.2021.0087
  • Cited by

    Periodical cited type(2)

    1. 黎玲,金恒,刘杰,龙超,何云勇,李中明,段黎明. 基于工业CT图像的自适应三维网格模型重建. 光学学报. 2023(03): 243-252 .
    2. 韩娅娜,栗煜,韩江涛,陈明武. 基于CATIA V6的BIM模型轻量化转换方法与实现. 人民长江. 2023(11): 234-241 .

    Other cited types(5)

  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views(3127) PDF downloads(947) Cited by(7)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return