Citation: | Zhang Yunfei, Ma Jun. Multi-screen display calculation method of GRECO for complex targets[J]. Journal of Beijing University of Aeronautics and Astronautics, 2005, 31(12): 1332-1336. (in Chinese) |
[1] Rius M, Rerrando M, Jofre L. GRECO:graphical electromagnetic computing for RCS prediction in real time[J]. IEEE Antennas and Propagation Magazine, 1993, 35(2):7~13 [2] Asvests J S. The physical-optics integral and computer graphics[J]. IEEE Trans Antennas and Propagation, 1995,AP 43(12):1659~1660 [3] Domingo M. Computation of the RCS of complex bodies modeled using NURBS surfaces[J]. IEEE Magazine, 1995,37(6):36~47 [4] 李民权,吴先良. 复杂目标RCS可视化电磁计算方法的改进[J]. 合肥工业大学学报,2003,26(2):246~249 Li Minquan, Wu Xianliang. Improvement in the method for the RCS graphical electromagnetic computation of the complex target[J]. Journal of HEFEI University of Technology, 2003,26(2):246~249(in Chinese) [5] 严靖峰,徐鹏根. RCS预估中图形电磁学方法的改进[J]. 电波科学学报,1998,13(3):313~317 Yan Jingfeng, Xu Penggen. Improved methods for graphical electromagnetic computing in RCS prediction[J]. Chinese Journal of Radio Science, 1998,13(3):313~317(in Chinese) [6] 高 鹰,宁焕生,王宝发. 基于Windows NT的复杂目标GRECO建模[J]. 系统工程与电子技术,1999,21(2):9~13 Gao Ying, Ning Huansheng, Wang Baofa. GRECO fitting of complex targets based on windows NT system[J]. Systems Engineering and Electronics, 1999, 21(2):9~13(in Chinese) [7] 郭 晖,龚书喜,赵维江,等. 基于NURBS建模和渐近物理光学的RCS计算研究[J]. 现代电子技术,2002,142(11):13~16 Guo Hui, Gong Shuxi, Zhao Weijiang, et al. On RCS computation using asymptotic PO with surface modeled by NURBS[J]. Modern Electronics Technology, 2002,142(11):13~16(in Chinese) [8] 李修懿,宁 涛,席 平. 飞行器RCS 预估计算前置处理的曲面元方法 . 北京航空航天大学学报,2004,30(13):254~257 Li Xiuyi, Ning Tao, Xi Ping. Technique based on surface element of prepositive disposal in predicting RCS of aircraft[J]. Journal of Beijing University of Aeronautics and Astronautics, 2004, 30(13):254~257(in Chinese) [9] 叶国鹏,张云飞.基于IGES文件输入的图形电磁计算方法研究[J]. 北京航空航天大学学报,2003,30(2):100~104 Ye Guopeng, Zhang Yunfei. Graphical electromagnetic computing method research based on IGES files import[J]. Journal of Beijing University of Aeronautics and Astronautics, 2003, 30(2):100~104(in Chinese) [10] 北京洪恩教育科技有限公司. 犀牛Rhino 3产品模型设计[M].天津:天津电子出版社,2004 Beijing Human Education Technology Co Ltd. Rhino 3 product model design[M].Tianjin:Tianjin Electronics Press,2004(in Chinese) [11] Board R, Neider J, Davis T, et al. OpenGL programming guide:the official guide to learning OpenGL, release 1[M]. Reading, Mass:Addison-Wesley, 1993
|
[1] | HUANG Jie-yu, ZHANG Hao-wei, XIE Jun-wei, LI Zheng-jie, QI Cheng, DING Zi-hang. A resource optimization allocation algorithm for radar networked system for stealth target tracking[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2023.0782 |
[2] | ZHAO Hong-jia, ZHANG Duo-na, LU Yuan-yao, DING Wen-rui. Intelligent Recognition of Electromagnetic Signal Modulation with Embedded Domain Knowledge[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2023.0746 |
[3] | ZHAO H Z,WEI G H,PAN X D,et al. Dual-frequency continuous wave pseudo-signal interference effect in swept-frequency radar[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(9):2843-2851 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0739. |
[4] | NIU G C,TIAN Y B,XIONG Y. Obstacle detection and tracking method based on millimeter wave radar and LiDAR[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(5):1481-1490 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0541. |
[5] | LANG B,WANG H,GONG J. A small sample data-driven radar compound jamming lightweight perception network[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(3):1005-1014 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0343. |
[6] | YANG J,HAO X H,CHEN Q L. Automatic recognition method of multi-radar signals based on multi-domain features[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(3):931-939 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0294. |
[7] | DAI Rui, LI Jie, HE Li-huo, GAO Xin-bo. Light-weight BiLSTM-based data association between echoes and tracks for multi-radar multi-target tracking[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2024.0013 |
[8] | YOU Z Y,HU G P,ZHOU H,et al. Joint DOA and DOD estimation of bistatic MIMO radar coherent targets based on smoothing matrix sets optimization[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(1):268-275 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0173. |
[9] | GE Wenqing, LI Detong, SONG Yadong, TAN Cao, LI Bo. Displacement sensorlesscontrol of electromagnetic linear actuator based on improved sliding mode observer[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2024.0291 |
[10] | CHENG B P,FANG Y W,PENG W S,et al. Comprehensive performance evaluation of swarm intelligence algorithms based on improved radar graph method[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(10):2780-2789 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0726. |
[11] | TAN Chuan-rui, LI Tang, CHEN Wen-qian, WANG Feng, YANG Dong-kai, WU Shi-yu. Evaluation of TDOA Based Air Target Localization Algorithm Using GNSS-Based Passive Radar[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2023.0685 |
[12] | NIU G C,WANG Y Y,TIAN Y B. LiDAR obstacle detection based on improved density clustering[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(10):2608-2616 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0733. |
[13] | MIAO D,YANG D K,XU Z C,et al. Low-altitude, slow speed and small target detection probability of passive radar based on GNSS signals[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(3):657-664 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0271. |
[14] | QUAN D Y,TANG Z Y,CHEN Y,et al. Radar emitter signal recognition based on MSST and HOG feature extraction[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(3):538-547 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0338. |
[15] | ZHOU Wei, LEI Peng, WANG Jun, WANG Jian. Analysis and suppression of radial velocity estimation error for moving targets in wideband LFMCW radar[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2023.0689 |
[16] | CAO X W,YAO D,SUN F R,et al. Airspace sector planning method based on radar data mining[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(12):3237-3244 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0573. |
[17] | YANG Yong, QIU Genying, HUANG Shuying, WAN Weiguo, HU Wei. Single image dehazing method based on improved atmospheric scattering model[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(8): 1364-1375. doi: 10.13700/j.bh.1001-5965.2021.0532 |
[18] | XU Lijun, LIU Fulu, DING Yiqing, LI Zhengyong, XIE Yuedong. Residual thickness detection of pipeline based on electromagnetic ultrasonic shear wave[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(9): 1767-1773. doi: 10.13700/j.bh.1001-5965.2022.0301 |
[19] | SUN Lihua, YAN Xiaopeng, LIU Qiang, HAO Xinhong, ZHANG Hongyun. PM based super-resolution method of azimuth detection for electromagnetic vortex wave fuze[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(7): 1263-1268. doi: 10.13700/j.bh.1001-5965.2021.0020 |
[20] | SU Donglin, CUI Shuo, BAI Jiangfei, LI Yaoyao. Fast prediction method for radiated and scattered coupled fields in complex electromagnetic environment[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(9): 1553-1560. doi: 10.13700/j.bh.1001-5965.2022.0705 |