Wen Wei, Fang Wei, Huang Xiaodong, et al. Domain-oriented simulation designing and modeling tool[J]. Journal of Beijing University of Aeronautics and Astronautics, 2010, 36(8): 981-985. (in Chinese)
Citation: Zhang Yunfei, Ma Jun. Multi-screen display calculation method of GRECO for complex targets[J]. Journal of Beijing University of Aeronautics and Astronautics, 2005, 31(12): 1332-1336. (in Chinese)

Multi-screen display calculation method of GRECO for complex targets

  • Received Date: 12 Oct 2004
  • Publish Date: 31 Dec 2005
  • Graphical electromagnetic computing (GRECO) is an effective method of predicating the radar cross section(RCS) of complex targets, but there must beforehand be a model file from which the shape parameter can be easily obtained. Based on the GRECO, the model file generated by several commercial shaping software could be converted to the type fitting for the RCS calculation by means of the commercial software RHINO. The processing method of data had a wide use and may not delimit any details of model. The multi-screen display calculation methodwas used to improve the precision of calculation when predicting the RCS of electrically large and full size targets. By using display list technology of OpenGL, the program expended less time than before. A simple approach was also presented by which the scattering source of targets can be analyzed expediently. The good agreement between the calculating results of our method and that of plate-edge method indicates that this method possesses practical value in engineering.

     

  • [1]  Rius M, Rerrando M, Jofre L. GRECO:graphical electromagnetic computing for RCS prediction in real time[J]. IEEE Antennas and Propagation Magazine, 1993, 35(2):7~13 [2]  Asvests J S. The physical-optics integral and computer graphics[J]. IEEE Trans Antennas and Propagation, 1995,AP 43(12):1659~1660 [3]  Domingo M. Computation of the RCS of complex bodies modeled using NURBS surfaces[J]. IEEE Magazine, 1995,37(6):36~47 [4]   李民权,吴先良. 复杂目标RCS可视化电磁计算方法的改进[J]. 合肥工业大学学报,2003,26(2):246~249 Li Minquan, Wu Xianliang. Improvement in the method for the RCS graphical electromagnetic computation of the complex target[J]. Journal of HEFEI University of Technology, 2003,26(2):246~249(in Chinese) [5]   严靖峰,徐鹏根. RCS预估中图形电磁学方法的改进[J]. 电波科学学报,1998,13(3):313~317 Yan Jingfeng, Xu Penggen. Improved methods for graphical electromagnetic computing in RCS prediction[J]. Chinese Journal of Radio Science, 1998,13(3):313~317(in Chinese) [6]   高 鹰,宁焕生,王宝发. 基于Windows NT的复杂目标GRECO建模[J]. 系统工程与电子技术,1999,21(2):9~13 Gao Ying, Ning Huansheng, Wang Baofa. GRECO fitting of complex targets based on windows NT system[J]. Systems Engineering and Electronics, 1999, 21(2):9~13(in Chinese) [7]  郭 晖,龚书喜,赵维江,等. 基于NURBS建模和渐近物理光学的RCS计算研究[J]. 现代电子技术,2002,142(11):13~16 Guo Hui, Gong Shuxi, Zhao Weijiang, et al. On RCS computation using asymptotic PO with surface modeled by NURBS[J]. Modern Electronics Technology, 2002,142(11):13~16(in Chinese) [8]   李修懿,宁 涛,席 平. 飞行器RCS 预估计算前置处理的曲面元方法 . 北京航空航天大学学报,2004,30(13):254~257 Li Xiuyi, Ning Tao, Xi Ping. Technique based on surface element of prepositive disposal in predicting RCS of aircraft[J]. Journal of Beijing University of Aeronautics and Astronautics, 2004, 30(13):254~257(in Chinese) [9]   叶国鹏,张云飞.基于IGES文件输入的图形电磁计算方法研究[J]. 北京航空航天大学学报,2003,30(2):100~104 Ye Guopeng, Zhang Yunfei. Graphical electromagnetic computing method research based on IGES files import[J]. Journal of Beijing University of Aeronautics and Astronautics, 2003, 30(2):100~104(in Chinese) [10]  北京洪恩教育科技有限公司. 犀牛Rhino 3产品模型设计[M].天津:天津电子出版社,2004 Beijing Human Education Technology Co Ltd. Rhino 3 product model design[M].Tianjin:Tianjin Electronics Press,2004(in Chinese) [11]   Board R, Neider J, Davis T, et al. OpenGL programming guide:the official guide to learning OpenGL, release 1[M]. Reading, Mass:Addison-Wesley, 1993
  • Relative Articles

    [1]HUANG Jie-yu, ZHANG Hao-wei, XIE Jun-wei, LI Zheng-jie, QI Cheng, DING Zi-hang. A resource optimization allocation algorithm for radar networked system for stealth target tracking[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2023.0782
    [2]ZHAO Hong-jia, ZHANG Duo-na, LU Yuan-yao, DING Wen-rui. Intelligent Recognition of Electromagnetic Signal Modulation with Embedded Domain Knowledge[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2023.0746
    [3]ZHAO H Z,WEI G H,PAN X D,et al. Dual-frequency continuous wave pseudo-signal interference effect in swept-frequency radar[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(9):2843-2851 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0739.
    [4]NIU G C,TIAN Y B,XIONG Y. Obstacle detection and tracking method based on millimeter wave radar and LiDAR[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(5):1481-1490 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0541.
    [5]LANG B,WANG H,GONG J. A small sample data-driven radar compound jamming lightweight perception network[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(3):1005-1014 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0343.
    [6]YANG J,HAO X H,CHEN Q L. Automatic recognition method of multi-radar signals based on multi-domain features[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(3):931-939 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0294.
    [7]DAI Rui, LI Jie, HE Li-huo, GAO Xin-bo. Light-weight BiLSTM-based data association between echoes and tracks for multi-radar multi-target tracking[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2024.0013
    [8]YOU Z Y,HU G P,ZHOU H,et al. Joint DOA and DOD estimation of bistatic MIMO radar coherent targets based on smoothing matrix sets optimization[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(1):268-275 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0173.
    [9]GE Wenqing, LI Detong, SONG Yadong, TAN Cao, LI Bo. Displacement sensorlesscontrol of electromagnetic linear actuator based on improved sliding mode observer[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2024.0291
    [10]CHENG B P,FANG Y W,PENG W S,et al. Comprehensive performance evaluation of swarm intelligence algorithms based on improved radar graph method[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(10):2780-2789 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0726.
    [11]TAN Chuan-rui, LI Tang, CHEN Wen-qian, WANG Feng, YANG Dong-kai, WU Shi-yu. Evaluation of TDOA Based Air Target Localization Algorithm Using GNSS-Based Passive Radar[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2023.0685
    [12]NIU G C,WANG Y Y,TIAN Y B. LiDAR obstacle detection based on improved density clustering[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(10):2608-2616 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0733.
    [13]MIAO D,YANG D K,XU Z C,et al. Low-altitude, slow speed and small target detection probability of passive radar based on GNSS signals[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(3):657-664 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0271.
    [14]QUAN D Y,TANG Z Y,CHEN Y,et al. Radar emitter signal recognition based on MSST and HOG feature extraction[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(3):538-547 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0338.
    [15]ZHOU Wei, LEI Peng, WANG Jun, WANG Jian. Analysis and suppression of radial velocity estimation error for moving targets in wideband LFMCW radar[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2023.0689
    [16]CAO X W,YAO D,SUN F R,et al. Airspace sector planning method based on radar data mining[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(12):3237-3244 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0573.
    [17]YANG Yong, QIU Genying, HUANG Shuying, WAN Weiguo, HU Wei. Single image dehazing method based on improved atmospheric scattering model[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(8): 1364-1375. doi: 10.13700/j.bh.1001-5965.2021.0532
    [18]XU Lijun, LIU Fulu, DING Yiqing, LI Zhengyong, XIE Yuedong. Residual thickness detection of pipeline based on electromagnetic ultrasonic shear wave[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(9): 1767-1773. doi: 10.13700/j.bh.1001-5965.2022.0301
    [19]SUN Lihua, YAN Xiaopeng, LIU Qiang, HAO Xinhong, ZHANG Hongyun. PM based super-resolution method of azimuth detection for electromagnetic vortex wave fuze[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(7): 1263-1268. doi: 10.13700/j.bh.1001-5965.2021.0020
    [20]SU Donglin, CUI Shuo, BAI Jiangfei, LI Yaoyao. Fast prediction method for radiated and scattered coupled fields in complex electromagnetic environment[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(9): 1553-1560. doi: 10.13700/j.bh.1001-5965.2022.0705
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views(2745) PDF downloads(918) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return