Li Jiajun, Eriqitai, Wang Qianget al. Jet mixing enhancement by pulsed blowing[J]. Journal of Beijing University of Aeronautics and Astronautics, 2009, 35(12): 1491-1494. (in Chinese)
Citation: Wang Fawei, Dong Xinmin, Wang Xiaoping, et al. Fault tolerant control of multi-effectors aircraft using integral sliding model with WPI[J]. Journal of Beijing University of Aeronautics and Astronautics, 2014, 40(10): 1378-1385. doi: 10.13700/j.bh.1001-5965.2013.0623(in Chinese)

Fault tolerant control of multi-effectors aircraft using integral sliding model with WPI

doi: 10.13700/j.bh.1001-5965.2013.0623
  • Received Date: 30 Oct 2013
  • Publish Date: 20 Oct 2014
  • An integral sliding model using dynamic adjustment weighted pseudo inverse (WPI) was proposed to fault tolerant control for over-actuated aircraft actuator damaged, which had fault reconstruction error and time delay, position and rate limiting. The instruction restricts module was used to limit saturation control command and instantaneous disturbance. A control allocation scheme using dynamic adjustment WPI was designed to gradually reduce instruction saturation. The control allocation was reconstructed by failure estimate to compensate the aerodynamic loss, which reduced the effects of fault for system stability. An integral siding model control law was designed to ensure system stability with fault reconstruction error and time delay. The simulation results show good track performance, as well as the robust for time delay and tolerant ability for actuator damaged.

     

  • [1]
    Johannes T, Johansen T A.Adaptive control allocation[J].Automatica,2008,44(11):2754-2765
    [2]
    Alwi H, Edwards C.Fault tolerant control of an octorotor using LPV based sliding mode control allocation[C]//2013 American Control Conference.Piscataway,NJ:IEEE,2013:6505-6510
    [3]
    Wang M, Yang J Y,Qin G Z,et al.Adaptive fault-tolerant control with control allocation for flight systems with severe actuator failures and input saturation[C]//2013 American Control Conference.Piscataway,NJ:IEEE,2013:5134-5139
    [4]
    Alwi H, Edwards C.Robust actuator fault reconstruction for LPV systems using sliding mode observers[C]//Proceedings of the IEEE Conference on Decision and Control.Piscataway,NJ:IEEE,2010:84-89
    [5]
    Shin D, Moon G,Kim Y.Design of reconfigurable flight control system using adaptive sliding mode control:actuator fault[C]//Proceedings of the Institution of Mechanical Engineers,Part G:Journal of Aerospace Engineering.London:Professional Engineering Publishing Ltd,2005,219(4):321-328
    [6]
    Shtessel Y, Buffington J,Banda S.Tailless aircraft flight control using multiple time scale reconfigurable sliding modes[J].IEEE Transactions on Control Systems Technology,2002,10(2): 288296
    [7]
    Alwi H, Edwards C.Fault tolerant control of a civil aircraft using a sliding mode based scheme[C]//Proceedings of the 44th IEEE Conference on Decision and Control,and the European Control Conference 2005.Piscataway,NJ:IEEE Computer Society,2005:1011-1016
    [8]
    Alwi H, Edwards C.Fault detection and fault-tolerant control of a civil aircraft using a sliding mode based scheme[J].IEEE Transactions on Control Systems Technology,2008,16(3): 499510
    [9]
    Alwi H, Edwards C.Sliding mode FTC with on-line control allocation[C]//Proceedings of the IEEE Conference on Decision and Control.Piscataway,NJ:IEEE,2006:5579-5584
    [10]
    Alwi H, Edwards C,Stroosma O, et al.A simulator evaluation of a model reference sliding mode fault tolerant controller[C]//2009 IEEE International Conference on Control and Automation.Piscataway,NJ:IEEE Computer Society,2009: 878883
    [11]
    Alwi H, Edwards C.Fault tolerant control using sliding modes with on-line control allocation[J].Automatica,2008,44(7):1859-1866
    [12]
    Boškovic J D, Mehra R K.Control allocation in overactuated aircraft under position and rate[C]//Proceedings of the American Control Conference.Piscataway,NJ:IEEE,2002,1: 791796
    [13]
    Boškovic J D, Ling B,Prasanth R,et al.Design of control allocation algorithms for overactuated aircraft under constraints using LMIs[C]//Proceedings of the IEEE Conference on Decision and Control,2002,2:1711-1716
    [14]
    Cai Z, de Queiroz M S,Dawson D M.A sufficiently smooth projection operator[J].IEEE Transactions on Automatic Control,2006,51(1):135-139
    [15]
    Härkegård O, Glad S T.Resolving actuator redundancy optimal control vs control allocation[J].Automatica,2005,41(1): 137144
    [16]
    Forssell L, Nilsson U.Admire the aero-data model in a research environment version 4.0,model description[R].FOI-R-1624-SE,2005

  • Cited by

    Periodical cited type(11)

    1. 童亮,杨婕,甘旭升,沈堤,杨文达,陈达雄. 基于改进混沌蚁群算法的多机冲突解脱仿真研究. 系统仿真学报. 2025(01): 155-166 .
    2. 马静,戴辉. 基于物联网技术的智能配送机器人避障控制方法. 自动化与仪器仪表. 2025(02): 252-257+261 .
    3. 刘晋州,唐雪琴,韩宝安,王明华. 基于IFS-FOA-ELM的网络安全态势预测方法. 火力与指挥控制. 2024(05): 184-190 .
    4. 葛振林. 基于DBN-MFSVM的玉米跨境供应链风险预警方法. 粮油食品科技. 2024(05): 202-210 .
    5. 张宏宏,李文华,郑家毅,刘宏斌,张鹏,高鹏,甘旭升. 有人/无人机协同作战:概念、技术与挑战. 航空学报. 2024(15): 168-194 .
    6. 谢华,韩斯特,尹嘉男,纪晓辉,杨逸晨. 城市低空无人机飞行计划协同推演与优化调配方法. 航空学报. 2024(19): 269-291 .
    7. 李克南,杨凯琪,郭宇鹏,王红勇. 面向自主运行的多航空器路径博弈协调. 北京航空航天大学学报. 2024(12): 3747-3758 . 本站查看
    8. 刘继新,蒋伶潇,刘禹汐,张新珏. 无人机冲突探测与解脱技术研究概述. 科学技术与工程. 2023(26): 11081-11089 .
    9. 谢华,苏方正,尹嘉男,韩斯特,张新珏. 复杂低空无人机飞行冲突网络建模与精细管理. 航空学报. 2023(18): 221-241 .
    10. 张凯,隋东,邹国良. 可扩展的无人机多机飞行冲突解脱算法研究. 航空计算技术. 2022(02): 62-66 .
    11. 吴学礼,董虎翼,阚海龙,甄然. 基于博弈策略的双无人机冲突解脱方法. 河北科技大学学报. 2022(06): 624-633 .

    Other cited types(6)

  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views(1129) PDF downloads(658) Cited by(17)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return