Hu Zhixing, Guan Keying. Complexity of Motions of Gyroscope[J]. Journal of Beijing University of Aeronautics and Astronautics, 1999, 25(5): 596-600. (in Chinese)
Citation: SHAO Lei, LIU Weihua, FENG Shiyu, et al. Flow rate of nitrogen-rich air and influence factors for onboard air separation unit[J]. Journal of Beijing University of Aeronautics and Astronautics, 2015, 41(1): 141-146. doi: 10.13700/j.bh.1001-5965.2014.0080(in Chinese)

Flow rate of nitrogen-rich air and influence factors for onboard air separation unit

doi: 10.13700/j.bh.1001-5965.2014.0080
  • Received Date: 27 Feb 2014
  • Publish Date: 20 Jan 2015
  • The flow rate of a certain type onboard air separation unit to produce the nitrogen-rich air related with the flight height, inlet pressure, temperature and the nitrogen concentration was experimentally studied on a test apparatus. An empirical correlation to predict the flow rate of the nitrogen-rich air was obtained and verified via the polynomial fitting method and experimental data. In addition, the influence factors affecting the flow rate were investigated and the variation of the flow rate along the entire flight profile was calculated. Results indicate that, the obtained empirical correlation has high prediction accuracy; the flow rate of the nitrogen-rich air along the flight profile could be calculated based on the present mathematical model; under a constant pressure, temperature, flow rate of the nitrogen-rich air is reversely proportional to the nitrogen concentration, so when nitrogen concentration increases, the flow rate decreases; especially, the effect will be larger under the higher inlet temperature and pressure; the flight height, pressure, temperature are proportional to the flow rate, and the lower nitrogen concentration, higher flight height, temperature and pressure will bring larger impact on the flow rate. The research results could be beneficial to the design of fuel tank inert system.

     

  • [1]
    Pabby A K,Sastre A M.State-of-the-art review on hollow fibre contactor technology and membrane-based extraction processes[J].Journal of Membrane Science,2013,430:263-303.
    [2]
    Sirkar K K.Membranes,phase interfaces,and separations:novel techniques and membranes-an overview[J].Industrial and Engineering Chemistry Research,2008,47(15):5250-5266.
    [3]
    Ahmad F,Lau K K,Shariff A M,et al.Temperature and pressure dependence of membrane permeance and its effect on process economics of hollow fiber gas separation system[J].Journal of Membrane Science,2013,430:44-55.
    [4]
    Sohrabi M R,Marjani A,Moradi S,et al.Mathematical modeling and numerical simulation of CO2 transport through hollow-fiber membranes[J].Applied Mathematical Modelling,2011,35(1):174-188.
    [5]
    Yoon S H,Lee S H,Yeom I T.Experimental verification of pressure drop models in hollow fiber membrane[J].Journal of Membrane Science,2008,310(1-2):7-12.
    [6]
    Katoh T,Tokumura M,Yoshikawa H,et al.Dynamic simulation of multicomponent gas separation by hollow-fiber membrane module:nonideal mixing flows in permeate and residue sides using the tanks-in-series model[J].Separation and Purification Technology,2011,76:362-372.
    [7]
    Rezakazemi M,Niazi Z,Mirfendereski M,et al.CFD simulation of natural gas sweetening in a gas-liquid hollow-fiber membrane contactor[J].Chemical Engineering Journal,2011,168(3):1217-1226.
    [8]
    Miramini S A,Razavi S M R,Ghadiri M,et al.CFD simulation of acetone separation from an aqueous solution using supercritical fluid in a hollow-fiber membrane contactor[J].Journal of Membrane Science,2013,72:130-136.
    [9]
    Shirazian S,Moghadassi A,Moradi S.Numerical simulation of mass transfer in gas-liquid hollow fiber membrane contactors for laminar flow conditions[J].Simulation Modelling Practice andTheory,2009,17:708-718.
    [10]
    Atchariyawut S,Feng C,Wang R,et al.Effect of membrane structure on mass-transfer in the membrane gas-liquid contacting process using microporous PVDF hollow fibers[J].Journal of Membrane Science,2006,285:272-281.
    [11]
    刘小芳,刘卫华,钱国诚,等.机载中空纤维膜富氮性能实验[J].航空动力学报,2012(5):976-980.Liu X F,Liu W H,Qian G C,et al.Experimentation on nitrogen-enriched characteristics of on-board hollow fibre membrane[J].Journal of Aerospace Power,2012(5):976-980(in Chinese).
    [12]
    贺高红,徐仁贤,朱葆琳.中空纤维膜气体分离器的数学模型[J].化工学报,1994,45(2):162-167.He G H,Xun R X,Zhu B L.Mathematical model for hollow fiber membrane gas separator[J].Journal of Chemical Industry and Engineering,1994,45(2):162-167(in Chinese).
    [13]
    冯诗愚,卢吉,刘卫华,等.机载制氮系统中空纤维膜分离特性[J].航空动力学报,2012,27(6):1332-1339.Feng S Y,Lu J,Liu W H,et al.Separation performance of hollow fiber membrane for on-board inerting gas generating system[J].Journal of Aerospace Power,2012,27(6):1332-1339(in Chinese).
    [14]
    Gavin H P.The Levenberg-Marquardt method for nonlinear least squares curve-fitting problems[EB/OL].North Carolina:Duke University[2013-11-09].
    [15]
    Parker Aerospace.Fuel and inertingsystem COMAC C919 program,1ETP2090024T[R].Irvine:Parker Hannifin Corporation,2009:104-106

  • Relative Articles

    [1]HE Q S,SUN S R. Real gas effect of inflatable reentry decelerator on windward side[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(3):816-823 (in Chinese). doi: 10.13700/j.bh.1001-5965.2023.0093.
    [2]GENG Z T,ZHAO J Q. Design and development of virtual simulation experiment software of composite piezoelectric materials[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(11):3377-3381 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0826.
    [3]LU L Z,LIU W,ZHANG H. Guidance and control method of levitation experiment facility inside China’s Space Station[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(9):2930-2938 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0738.
    [4]ZHANG Yun, LIU Jingqing, CHENG Geng, LEI Xin, XU Zhiyong. Establishment and Experimental Study of Polishing Model for Titanium Alloy Front and Rear Edges[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2024.0541
    [5]HAN F Q,ZHANG D Y. Ultrasonic longitudinal torsional and low frequency torsional compound vibration tapping experiment[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(4):1077-1084 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0453.
    [6]HAN Qi-wei, JIN Jie, LAI Gen-hong, HUANG Jun-qi, WANG Fang. Experimental study of multi-droplet evaporation model of one-dimensional array[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2024.0138
    [7]WANG Ziang, LU Zhirong, LI Honghao, ZHOU Wenya, WANG Xiaoming. SMA driven multi-state variable camber wing: Design,analysis,and experimentation[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2023.0844
    [8]XIONG F,LI Q,LI J,et al. Time-triggered traffic scheduling-oriented virtual network embedding method[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(6):1982-1990 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0511.
    [9]DONG Hao, ZHAO Chao-fan, ZHU Jian-qin, CHENG Ze-yuan. Flow Distribution Characteristics of Supercritical Fuel in Parallel Tubes under Non-uniform Heating[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2023.0771
    [10]TONG R Q,HU X N,LIU Y R,et al. Mining traffic detection based on automated private protocol identification[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(7):2304-2313 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0598.
    [11]MAO Qinghua, ZHAO Bing, LI Yang. CHAOS ephemeran algorithm combining polynomial difference learning and dimensional variation[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2023.0698
    [12]WANG Kai, DANG Shuanghuan, LIU Kang, LI Yufang, CHEN Zhi. The influence of closed fuel tank pressure limitation on the nitrogen-enriched air demand[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2024-0782
    [13]LI N,GUO Y D,XU C,et al. Design and experiment of cryogenic loop heat pipe of two-dimensional pointing at liquid nitrogen zone[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(7):1573-1582 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0500.
    [14]ZHENG S F,ZHU Y C,LING J,et al. Experimental study on parallel control of axial dual-piezoelectric stack actuator[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(6):1460-1470 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0432.
    [15]WANG Z J,YAO J,XIONG J Z,et al. Experimental research on erosion of Q345 steel under two-phase flow condition[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(4):891-899 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0357.
    [16]ZOU Qi-hong, XU An-yi, LI Peng, SUN Pei-jie, LI Qian, GE Tian-shu. Experimental study on integrated solid desiccant coated heat pump system for manned spaceflight[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2022.0972
    [17]WANG L,ZENG T H,REN Z F,et al. Analysis of heat load and bleed air schedule for hot air anti-icing system[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(10):2660-2668 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0710.
    [18]GUO S N,SONG W,XIANG N L,et al. Dynamic characteristics of turbine flowmeter based on CFD simulation[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(8):1904-1911 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0594.
    [19]YANG Jin-hui, WANG Xi-jie, XU Shi-yang, WANG Xiao-li. Study on flame stability of oxygen rich torch igniter[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2023.0528
    [20]WANG Chenchen, PAN Jun, WANG Yangyang, DUAN Weijie. Effect of suction flow rate on performance of catalytic inerting system[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(7): 1183-1189. doi: 10.13700/j.bh.1001-5965.2021.0026
  • Cited by

    Periodical cited type(3)

    1. 牟正,贺强. DA-42飞机减震器逆向重建与外载荷计算. 西安航空学院学报. 2024(01): 7-13 .
    2. 汪文君. 舰载飞机着舰撞击载荷实测技术研究. 空军工程大学学报. 2024(02): 69-75 .
    3. 谢帅,杨全伟. 多轮多支柱起落架地面转弯载荷分析与预测. 空军工程大学学报. 2022(05): 22-27 .

    Other cited types(3)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-04051015202530
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 21.9 %FULLTEXT: 21.9 %META: 76.7 %META: 76.7 %PDF: 1.4 %PDF: 1.4 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 4.4 %其他: 4.4 %China: 0.2 %China: 0.2 %Seattle: 0.2 %Seattle: 0.2 %上海: 1.0 %上海: 1.0 %佳木斯: 0.3 %佳木斯: 0.3 %北京: 2.9 %北京: 2.9 %十堰: 0.3 %十堰: 0.3 %南京: 1.6 %南京: 1.6 %唐山: 0.3 %唐山: 0.3 %天津: 0.3 %天津: 0.3 %宁波: 0.5 %宁波: 0.5 %常州: 0.3 %常州: 0.3 %张家口: 0.5 %张家口: 0.5 %徐州: 0.2 %徐州: 0.2 %成都: 0.2 %成都: 0.2 %扬州: 0.2 %扬州: 0.2 %杭州: 0.3 %杭州: 0.3 %江门: 0.2 %江门: 0.2 %洛阳: 0.2 %洛阳: 0.2 %深圳: 7.0 %深圳: 7.0 %温州: 0.2 %温州: 0.2 %漯河: 1.0 %漯河: 1.0 %石家庄: 1.3 %石家庄: 1.3 %芒廷维尤: 17.6 %芒廷维尤: 17.6 %芝加哥: 0.3 %芝加哥: 0.3 %苏州: 0.2 %苏州: 0.2 %蚌埠: 0.2 %蚌埠: 0.2 %西宁: 53.7 %西宁: 53.7 %诺沃克: 0.2 %诺沃克: 0.2 %郑州: 4.3 %郑州: 4.3 %长沙: 0.5 %长沙: 0.5 %其他ChinaSeattle上海佳木斯北京十堰南京唐山天津宁波常州张家口徐州成都扬州杭州江门洛阳深圳温州漯河石家庄芒廷维尤芝加哥苏州蚌埠西宁诺沃克郑州长沙

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views(1313) PDF downloads(744) Cited by(6)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return