Volume 48 Issue 7
Jul.  2022
Turn off MathJax
Article Contents
WANG Chenchen, PAN Jun, WANG Yangyang, et al. Effect of suction flow rate on performance of catalytic inerting system[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(7): 1183-1189. doi: 10.13700/j.bh.1001-5965.2021.0026(in Chinese)
Citation: WANG Chenchen, PAN Jun, WANG Yangyang, et al. Effect of suction flow rate on performance of catalytic inerting system[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(7): 1183-1189. doi: 10.13700/j.bh.1001-5965.2021.0026(in Chinese)

Effect of suction flow rate on performance of catalytic inerting system

doi: 10.13700/j.bh.1001-5965.2021.0026
More Information
  • Corresponding author: WANG Chenchen, E-mail: 583812642@qq.com
  • Received Date: 16 Jan 2021
  • Accepted Date: 24 Apr 2021
  • Publish Date: 07 May 2021
  • Based on the principle of oxygen-consuming inerting system, the AMESim simulation model of low temperature controllable oxygen consumed catalytic green inerting system (3CGIS) was established. The effect of the suction flow rate of 3CGIS on the inerting time, and the change of the oxygen volume fraction in the fuel tank ullage under the flight envelope were researched. The prediction of oxygen volume fraction under the entire flight envelope was verified against the experimental data, showing a satisfactory agreement, and its validity wasvalidated with the comparison of results. On the basis of modeling, the suction flow rate is approximately inversely proportional to the initial inerting time were obtained; under a certain inerting time, the required suction flow rate increaseswith the decrease of fuel load. Aiming at the possibility that the oxygen volume fraction in the fuel tank ullage during the descent stage may exceed 12%, a dual-flow inerting mode design method is proposed to ensure that the oxygen volume fraction is less than 12% under the entire flight envelope. The results can be provided as a reference for design and optimization of low temperature controllable oxygen consumed catalytic green inerting system.

     

  • loading
  • [1]
    MANATT S A. Fuel tank inerting system: US, 4556180[P]. 1985-12-03.
    [2]
    刘小芳, 刘卫华. 飞机供氧和燃油箱惰化技术概况[J]. 北华航天工业学院学报, 2008, 18(3): 4-7. doi: 10.3969/j.issn.1673-7938.2008.03.002

    LIU X F, LIU W H. Outline of airborne oxygen supplied and fuel tanks inerted[J]. Journal of North China Institute of Aerospace Engineering, 2008, 18(3): 4-7(in Chinese). doi: 10.3969/j.issn.1673-7938.2008.03.002
    [3]
    Fuel Tank Harmonization Working Group Task Group 1. Service history/fuel tank safety level assessment[R]. [S. l. ]: Aviation Rulemaking Advisory Committee (ARAC), 1998.
    [4]
    冯诗愚, 卢吉, 刘卫华, 等. 机载制氮系统中空纤维膜分离特性[J]. 航空动力学报, 2012, 27(6): 1332-1339. https://www.cnki.com.cn/Article/CJFDTOTAL-HKDI201206020.htm

    FENG S Y, LU J, LIU W H, et al. Separation performance of hollow fiber membrane for on-board inerting gas generating system[J]. Journal of Aerospace Power, 2012, 27(6): 1332-1339(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HKDI201206020.htm
    [5]
    LANGTON R, CLARK C, HEWITT M, et al. Aircraft fuel systems[M]. New York: John Wiley & Sons, 2010: 225-237.
    [6]
    ABRAMOWITZ A, BORIS P. Characterization of an oxygen/nitrogen permeable membrane system: DOT/FAA/AR-95/91[R]. [S. l. ]: FAA Report, 1996.
    [7]
    CAVAGE W M. The cost of implementing ground-based fuel tank inerting in the commercial fleet: DOT/FAA/AR-00/19[R]. [S. l. ]: FAA Report, 2000.
    [8]
    SUMMER S M. Cold ambient temperature effects on heated fuel tank vapor concentrations: DOT/FAA/AR-TN99/93[R]. [S. l. ]: FAA Report, 2000.
    [9]
    王明波, 邵垒, 潘俊, 等. 耗氧型燃油箱惰化技术历史和现状[J]. 航空科学技术, 2016, 27(7): 1-7. https://www.cnki.com.cn/Article/CJFDTOTAL-HKKX201607002.htm

    WANG M B, SHAO L, PAN J, et al. History and current status of oxygen consumption based fuel tank inerting technology[J]. Aeronautical Science & Technology, 2016, 27(7): 1-7(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HKKX201607002.htm
    [10]
    刘夙春, 邱献双. 一种新型的飞机油箱催化惰化系统[J]. 航空科学技术, 2011(4): 27-29. doi: 10.3969/j.issn.1007-5453.2011.04.009

    LIU S C, QIU X S. A new fuel tank catalytically inerting system[J]. Aeronautical Science & Technology, 2011(4): 27-29(in Chinese). doi: 10.3969/j.issn.1007-5453.2011.04.009
    [11]
    LIMAYE S, KOENIG D. Catalytic reactive component reduction system and methods for the use thereof: US, 11/994801[P]. 2008-08-21.
    [12]
    MORRIS R, MILLER J, LIMAYE S. Fuel deoxygenation and aircraft thermal management: AIAA 2006-4027[R]. Reston: AIAA, 2006.
    [13]
    WALKER S, JUNG W, ROBERTSON S. Demonstration of a novel catalyst based green on board inert gas generation system (GOBIGGS) for fuel tank inerting[C]//The American Helicopter Society 69th Annual Forum, 2013: 1-10.
    [14]
    冯诗愚, 李超越, 邵垒, 等. 一种燃油箱绿色惰化系统地面惰化性能分析[J]. 航空动力学报, 2017, 32(2): 268-274. https://www.cnki.com.cn/Article/CJFDTOTAL-HKDI201702002.htm

    FENG S Y, LI C Y, SHAO L, et al. Analysis on ground-based inerting performance of a fuel tank green on-board inert gas generation system[J]. Journal of Aerospace Power, 2017, 32(2): 268-274(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HKDI201702002.htm
    [15]
    FENG S Y, PENG X T, CHEN C, et al. Effect of air supplementation on the performance of an onboard catalytic inerting system[J]. Aerospace Science and Technology, 2020, 97(2): 1-8.
    [16]
    邵垒. 飞机燃油箱耗氧型惰化技术理论和实验研究[D]. 南京: 南京航空航天大学, 2018.

    SHAO L. Theoretical and experimental study of oxygen consumed inerting technology for aircraft fuel tank[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2018(in Chinese).
    [17]
    彭孝天, 冯诗愚, 周利彪, 等. 温度对耗氧型惰化系统产水性能影响[J]. 航空动力学报, 2020, 35(8): 1622-1627. https://www.cnki.com.cn/Article/CJFDTOTAL-HKDI202008007.htm

    PENG X T, FENG S Y, ZHOU L B, et al. Effect of temperature on water production performance of oxygen-consuming inerting system[J]. Journal of Aerospace Power, 2020, 35(8): 1622-1627(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HKDI202008007.htm
    [18]
    谢辉辉, 冯诗愚, 彭孝天, 等. 耗氧型惰化系统反应器性能理论研究[J]. 北京航空航天大学学报, 2019, 45(2): 2312-2319. doi: 10.13700/j.bh.1001-5965.2019.0117#viewType=Abstract

    XIE H H, FENG S Y, PENG X T, et al. Theoretical of reactor performance in oxygen consumption based inerting system[J]. Journal of Beijing University of Aeronautics and Astronautics, 2019, 45(2): 2312-2319(in Chinese). doi: 10.13700/j.bh.1001-5965.2019.0117#viewType=Abstract
    [19]
    FENG S Y, LI C Y, PENG X T, et al. Oxygen concentration variation in ullage of an inert aircraft fuel tank determined by the dissolved oxygen evolution[J]. Chinese Journal of Aeronautics, 2020, 33(7): 1919-1928. doi: 10.1016/j.cja.2019.12.020
    [20]
    王苏明, 冯诗愚, 李宗祺, 等. 燃油箱耗氧惰化与中空膜惰化的数值模拟及比较[J]. 北京航空航天大学学报, 2020, 46(5): 1032-1038. doi: 10.13700/j.bh.1001-5965.2019.0332#viewType=Abstract

    WANG S M, FENG S Y, LI Z Q, et al. Numerical simulation and comparison of oxygen consumption inerting and hollow membrane inerting in fuel tank[J]. Journal of Beijing University of Aeronautics and Astronautics, 2020, 46(5): 1032-1038(in Chinese). doi: 10.13700/j.bh.1001-5965.2019.0332#viewType=Abstract
    [21]
    LIMAYE S, ROBERSTON S, KOENIG D, et al. Development of a"green"on-board inert gas generation system[C]//Proceedings of the 15th Triennial International Fire & Cabin Safety Research Conference, 2007.
    [22]
    中国民用航空局. 中国民用航空规章第25部: 运输类飞机适航标准: CCAR-25-R4[S]. 北京: 中国民用航空局, 2011: 245-246.

    Civil Aviation Administration of China. Chinese civil aviation regulations. Part 25. Airworthiness standards for transport category aircraft: CCAR-25-R4[S]. Beijing: Civil Aviation Administration of China, 2011: 245-246(in Chinese).
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)  / Tables(3)

    Article Metrics

    Article views(216) PDF downloads(14) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return