Cai Zhihao, Wu Huiyao, Wang Yingxunet al. Approach of UAS airspace integration based on systematic classification and level of safety assessment[J]. Journal of Beijing University of Aeronautics and Astronautics, 2013, 39(11): 1497-1502. (in Chinese)
Citation: XU Yuanming, WANG Dong. Design and optimization of improving stability of curvilinear blade-stiffened panels[J]. Journal of Beijing University of Aeronautics and Astronautics, 2015, 41(4): 567-573. doi: 10.13700/j.bh.1001-5965.2014.0257(in Chinese)

Design and optimization of improving stability of curvilinear blade-stiffened panels

doi: 10.13700/j.bh.1001-5965.2014.0257
  • Received Date: 09 May 2014
  • Rev Recd Date: 05 Aug 2014
  • Publish Date: 20 Apr 2015
  • Stiffened panels are widely used in the aerospace field as a typical structure. To further expand the design space of straight stiffened panels, an optimization framework for curvilinear blade-stiffened panels was developed based on ModelCenter optimization environment, Catia and Abaqus. Stiffeners were generated by equally-splitm cubic B-spline interpolation function, which had no limit to the number of parameters, thus providing a sufficiently large optimization space for curvilinear stiffened panels. On the other hand, two methods were taken to load on stiffeners including collecting loaded edges of stiffeners and making stiffeners perpendicular to panel edges and some new configurations of stiffened panels were proposed. Optimization results show that for single-axle load, curvilinear stiffened panels in comparison with straight stiffened panels make very small stability improvement. But for multi-axial load, curvilinear stiffened panels have better stability than straight stiffened panels.

     

  • [1]
    张柱国, 姚卫星,刘克龙.基于进化Kriging模型的金属加筋板结构布局优化方法[J].南京航空航天大学学报,2008,40(4): 497-500. Zhang Z G,Yao W X,Liu K L.Configuration optimization method for metallic stiffened panel structure based on updated Kriging model[J].Journal of Nanjing University of Aeronautics and Astronautics,2008,40(4):497-500(in Chinese).
    [2]
    Hao P, Wang B,Li G.Surrogate-based optimum design for stiffened shells with adaptive sampling[J].AIAA Journal,2012,50(11): 2389-2407.
    [3]
    Mulani S B, Slemp W C H,Kapania R K.EBF3PanelOpt:an optimization framework for curvilinear blade-stiffened panels[J].Thin-Walled Structures,2013,63:13-26.
    [4]
    Mulani S B, Havens D,Norris A,et al.Design,optimization, and evaluation of Al-2139 compression panel with integral T-stiffeners[J].Journal of Aircraft,2013,50(4):1275-1286.
    [5]
    Kapania R K, Li J,Kapoor H.Optimal design of unitized panels with curvilinear stiffeners[C]//AIAA 5th ATIO and the AIAA 16th Lighter-than-Air Systems Technology Conference and Balloon Systems Conference,2005,3:1708-1737.
    [6]
    Dang T D, Kapania R K,Slemp W C H,et al.Optimization and postbuckling analysis of curvilinear-stiffened panels under multiple-load cases[J].Journal of Aircraft,2010,47(5):1656-1671.
    [7]
    Mulani S B, Duggirala V,Kapania R K.Curvilinearly T-stiffened panel-optimization framework under multiple load cases using parallel processing[J].Journal of Aircraft,2013,50(5):1540- 1554.
    [8]
    罗煦琼. 一维搜索问题的三次B样条插值法[J].浙江科技学院学报,2008,20(1):1-3. Luo X Q.Cubic B-spline interpolation for one-dimensional search method[J].Journal of Zhejiang University of Science and Technology,2008,20(1):1-3(in Chinese).
    [9]
    Özakça M, Murphy A,van der Veen S.Buckling and post-buckling of sub-stiffened or locally tailored aluminium panels[C]//25th Congress of the International Council of the Aeronautical Sciences 2006.Red Hook,NY:Curran Associates Inc,2006,4:2367-2382.

  • Relative Articles

    [1]LI T,ZHAO Y Q,XU T,et al. Stability control of vehicles powered by non-pneumatic wheels based on robust optimal sliding mode[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(4):1342-1351 (in Chinese). doi: 10.13700/j.bh.1001-5965.2023.0238.
    [2]WEI J R,WU Q,WU W,et al. Study on global stability of aluminum alloy honeycomb cylinder under axial compression[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(3):962-972 (in Chinese). doi: 10.13700/j.bh.1001-5965.2023.0135.
    [3]LYU Y Z,WAN H M,XU Y M. Dynamic stability analysis of a single-point hanging container[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(2):419-427 (in Chinese). doi: 10.13700/j.bh.1001-5965.2023.0036.
    [4]SUO X S,WANG Y,ZHU Z. Overall scheme optimization of BWB UAVs based on comprehensive evaluation[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(2):466-477 (in Chinese). doi: 10.13700/j.bh.1001-5965.2023.0250.
    [5]JI Chufan, CHEN Xiao, LIU Ting, HUANG Dandan. Performance evaluation of Beidou B1C authentication scheme based on aggregate MAC[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2024.0764
    [6]WANG C S,ZHANG X Y,ZHAN Z X,et al. Analysis of compression stability and load capacity of thick composite plate structures[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(1):94-101 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0991.
    [7]LI Wei, ZHAO Zhigang, ZHAO Xiangtang, LI Zixuan, GANG Zheng. Workspace stability evaluation of multi-engine suspension system based on EWM -TOPSIS[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2024.0546
    [8]CHENG H J,YANG J F,LIU Z H,et al. Rule-based integrated stability control of multi-axle special vehicle[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(6):1794-1805 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0569.
    [9]GAN W B,ZUO Z J,XIANG J W,et al. Research progress on dynamic stability of rotating variant wing opening and closing process for aircraft[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(4):1053-1064 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0469.
    [10]YANG Hai-feng, LI Zhi-gang, TAN Yue-dong, XIAO Peng-hui, KONG Wei. Development of Ejection Seat-Dummy Model and Analysis of Seat Tip-off Stability[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2023.0654
    [11]ZHANG Guang-chuan, WANG Wei-zong, REN Jun-xue, WANG Yi-bai, TANG Hai-bin, YANG Li-jun. Design and experimental study of an unclosed-loop E×B drift Hall thruster[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2024.0041
    [12]ZHANG M,FAN C G,YU S Q. An elliptical damage detection method using full matrix capture for stiffened plate[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(6):2033-2042 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0568.
    [13]CHEN G,SUN X,LI G X,et al. Analysis and improvement of lateral instability of quasi-biconical lifting reentry spacecraft[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(9):2800-2809 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0708.
    [14]WANG X L,XU Y F,XUE Y C. Evaluation and optimization of departure flight schedule stability of airport group[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(6):1331-1341 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0462.
    [15]GAO Yang, XU Guo-ning, WANG Sheng, LI Yong-xiang, CAI Rong, YANG Yan-chu. Stability analysis of stratospheric airship energy system[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2023.0020
    [16]FAN Z W,YU X Q,DAI Y L. Trade-off for top-level requirements of commercial aircraft using comprehensive evaluation and optimization[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(9):2415-2422 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0670.
    [17]ZHANG X C,WAN Z Q,YAN D. Optimal active twist control for rotor vibration reduction[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(12):3397-3408 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0105.
    [18]XIAO Y,CHEN X,YANG L Y,et al. Analysis of radome error on guidance loop stability[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(11):3066-3074 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0780.
    [19]YANG Hui, FAN Shuoshuo, WANG Yan, LIU Rongqiang, XIAO Hong. Stiffness optimization of M-shaped boom based on radial basis function surrogate model[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(11): 2121-2129. doi: 10.13700/j.bh.1001-5965.2021.0091
    [20]ZHANG Xuejun, TAN Yuanhao, LI Xueyuan, JIAN Xinhui. A review of development of space-based ADS-B system and its key technologies[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(9): 1589-1604. doi: 10.13700/j.bh.1001-5965.2022.0309
  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-072024-082024-092024-102024-112024-122025-012025-022025-032025-042025-052025-06051015202530
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 15.4 %FULLTEXT: 15.4 %META: 83.2 %META: 83.2 %PDF: 1.5 %PDF: 1.5 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 5.8 %其他: 5.8 %六安: 0.2 %六安: 0.2 %北京: 4.4 %北京: 4.4 %十堰: 0.2 %十堰: 0.2 %南昌: 0.4 %南昌: 0.4 %厦门: 0.2 %厦门: 0.2 %呼和浩特: 0.2 %呼和浩特: 0.2 %哥伦布: 0.4 %哥伦布: 0.4 %唐山: 0.2 %唐山: 0.2 %天津: 0.4 %天津: 0.4 %宣城: 0.4 %宣城: 0.4 %弗吉尼亚州: 0.2 %弗吉尼亚州: 0.2 %张家口: 0.6 %张家口: 0.6 %扬州: 0.2 %扬州: 0.2 %杭州: 0.2 %杭州: 0.2 %汕头: 0.6 %汕头: 0.6 %江门: 0.6 %江门: 0.6 %深圳: 14.7 %深圳: 14.7 %漯河: 0.2 %漯河: 0.2 %石家庄: 1.5 %石家庄: 1.5 %芒廷维尤: 19.3 %芒廷维尤: 19.3 %莫斯科: 0.2 %莫斯科: 0.2 %西宁: 47.3 %西宁: 47.3 %西安: 0.6 %西安: 0.6 %长沙: 0.2 %长沙: 0.2 %青岛: 0.6 %青岛: 0.6 %其他六安北京十堰南昌厦门呼和浩特哥伦布唐山天津宣城弗吉尼亚州张家口扬州杭州汕头江门深圳漯河石家庄芒廷维尤莫斯科西宁西安长沙青岛

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views(1150) PDF downloads(662) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return