Citation: | LI Haitao, HE Yuzhu, SONG Pinget al. SVM fault diagnosis of autopilot based on quantum inspired gravitational search algorithm[J]. Journal of Beijing University of Aeronautics and Astronautics, 2016, 42(6): 1093-1098. doi: 10.13700/j.bh.1001-5965.2015.0417(in Chinese) |
[1] |
钟宇,白云,黄孝文.基于RBF神经网络的导弹自动驾驶仪故障诊断[J].现代防御技术,2011,39(2):54-59. ZHONG Y,BAI Y,HUANG X W. Fault diagnosis of missile autopilot based on RBF neural network[J].Modern Defence Technology,2011,39(2):54-59(in Chinese).
|
[2] |
刘东平,单甘霖,张岐龙,等.基于改进遗传算法的支持向量机参数优化[J].微计算机应用,2010,31(5):11-15. LIU D P,SHAN G L,ZHANG Q L, et al. Parameters optimization of support vector machine based on improved genetic algorithm[J].Microcomputer Applications,2010,31(5):11-15(in Chinese).
|
[3] |
ALWAN H B,KU-MAHAMUD K R.Optimizing support vector machine parameters using continuous ant colony optimization[C]//20127th International Conference on Computing and Convergence Technology.Piscataway,NJ:IEEE Press,2012:164-169.
|
[4] |
宋晓华,杨尚东,刘达.基于蛙跳算法的改进支持向量机预测方法及应用[J].中南大学学报(自然科学版),2011,42(9):2737-2740. SONG X H,YANG S D,LIU D. Improved support vector machine forecasting model by shuffled frog leaping algoritmh and its application[J].Journal of Central South University (Science and Technology),2011,42(9):2737-2740(in Chinese).
|
[5] |
薛浩然,张珂珩,李斌,等.基于布谷鸟算法和支持向量机的变压器故障诊断[J].电力系统保护与控制,2015,43(8):8-13. XUE H R,ZHANG K H,LI B, et al. Fault diagnosis of transformer based on the cuckoo search and support vector machine[J].Power System Protection and Control,2015,43(8):8-13(in Chinese).
|
[6] |
ZHANG W,NIU P,LI G,et al.Forecasting of turbine heat rate with online least squares support vector machine based on gravitational search algorithm[J].Knowledge-Based Systems,2013,39(2):34-44.
|
[7] |
戢钢,王景成,葛阳,等.城市小时级需水量的改进型引力搜索算法-最小二乘支持向量机模型预测[J].控制理论与应用,2014,31(10):1376-1382. JI G,WANG J C,GE Y,et al.Gravitational search algorithm-least squares support vector machine model forecasting on hourly urban water demand[J].Control Theory and Applications,2014,31(10):1376-1382(in Chinese).
|
[8] |
SOLEIMANPOUR-MOGHADAM M,NEZAMABADI-POUR H,FARSANGI M M.A quantum inspired gravitational search algorithm for numerical function optimization[J].Information Sciences,2014,267(5):83-100.
|
[9] |
RASHEDI E,NEZAMABADI-POUR H,SARYAZDI S.GSA:A gravitational search algorithm[J].Information Sciences,2009,179(13):2232-2248.
|
[10] |
RASHEDI E,NEZAMABADI-POUR H,SARYAZDI S.BGSA:Binary gravitational search algorithm[J].Natural Computing,2010,9(3):727-745.
|
[11] |
SOLEIMANPOUR-MOGHADAM M, NEZAMABADI-POUR H,FARSANGI M M.A quantum behaved gravitational search algorithm[J].Intelligent Information Management,2012,4(6):390-395.
|
[12] |
CORTES C,VAPNIK V.Support-vector networks[J].Machine Learning,1995,20(3):273-297.
|
[13] |
DONG S,LUO T.Bearing degradation process prediction based on the PCA and optimized LS-SVM model[J].Measurement,2013,46(9):3143-3152.
|
[14] |
张周锁,李凌均,何正嘉.基于支持向量机的机械故障诊断方法研究[J].西安交通大学学报,2002,36(12):1303-1306. ZHANG Z S,LI L J,HE Z J. Research on diagnosis method of machinery fault based on support vector machine[J].Journal of Xi'an Jiaotong University,2002,36(12):1303-1306(in Chinese).
|
[15] |
李琼,陈利.一种改进的支持向量机文本分类方法[J].计算机技术与发展,2015,25(5):78-82. LI Q, CHEN L.An improved support vector machine text classification method[J].Computer Technology and Development,2015,25(5):78-82(in Chinese).
|
[16] |
庄严,白振林,许云峰.基于蚁群算法的支持向量机参数选择方法研究[J].计算机仿真,2011,28(5):216-219. ZHUANG Y,BAI Z L,XU Y F. Research on parameters of support vector machine based on ant colony algorithm[J].Computer Simulation,2011,28(5):216-219(in Chinese).
|
[1] | LEI C L,JIAO M X,FAN G F,et al. Fault diagnosis method of rolling bearings based on SSA-IWT-EMD[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(4):1152-1162 (in Chinese). doi: 10.13700/j.bh.1001-5965.2023.0174. |
[2] | WANG J H,LIU R,CAO J. Unlabeled data fault diagnosis method based on multi-domain adaptation[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(4):1185-1194 (in Chinese). doi: 10.13700/j.bh.1001-5965.2023.0166. |
[3] | GUO J F,TAN B H,WANG Z M. Fault diagnosis method of rolling bearing based on MDAM-GhostCNN[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(4):1172-1184 (in Chinese). doi: 10.13700/j.bh.1001-5965.2023.0224. |
[4] | ZHAO H L,YANG J Q. Aero-engine fault diagnosis based on fusion convolutional Transformer[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(4):1117-1126 (in Chinese). doi: 10.13700/j.bh.1001-5965.2023.0206. |
[5] | RUAN S L,DONG Z,SUN Y,et al. Parameter optimization method of thrust vector/pneumatic rudder composite control law for aircraft based on singular value method[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(4):1332-1341 (in Chinese). doi: 10.13700/j.bh.1001-5965.2023.0227. |
[6] | MA X,XU S,SHANG P C,et al. Fault diagnosis of gearbox under open set and cross working condition based on transfer learning[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(5):1753-1760 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0719. |
[7] | WANG J H,TANG G D,CAO J,et al. Fault diagnosis method of BN ball mill rolling bearing based on AESL-GA[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(4):1138-1146 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0428. |
[8] | LI R Z,JIANG B,YU Z Q,et al. Data-driven fault detection and diagnosis for UAV swarms[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(5):1586-1592 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0441. |
[9] | JIAO M X,LEI C L,MA S Z,et al. Fault diagnosis method of small sample rolling bearings under variable working conditions based on MTF-SPCNN[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(12):3696-3708 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0927. |
[10] | CAO J,YIN H N,LEI X G,et al. Bearing fault diagnosis in variable working conditions based on domain adaptation[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(8):2382-2390 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0631. |
[11] | LI Bowen, LEI Xiaoyong. Flight task recognition and action segmentation based on SVM[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2024.0635 |
[12] | CAO S Y,LIU J Q,SONG G T,et al. Borehole image detection of aero-engine based on self-attention semantic segmentation model[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(6):1504-1515 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0448. |
[13] | MA D,LIU Z H,GAO Q H,et al. Solenoid directional control valve fault pattern recognition based on multi-feature fusion[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(4):913-921 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0367. |
[14] | GAO H H,CHAO Q,XU Z,et al. Piston pump fault diagnosis based on Siamese neural network with small samples[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(1):155-164 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0213. |
[15] | NIE X H,JIN L. Application of kernel principal component analysis in autonomous fault diagnosis for spacecraft flywheel[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(8):2119-2128 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0582. |
[16] | ZHU P R,LIU Y Z,LIU Z C,et al. Fault diagnosis of synchronous generator rotating rectifier based on CEEMD and improved ELM[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(5):1166-1175 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0376. |
[17] | ZHAO J Y,HU J,YAO J Y,et al. EHA fault diagnosis and fault tolerant control based on adaptive neural network robust observer[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(5):1209-1221 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0416. |
[18] | WANG J H,GAO Y,CAO J,et al. Fault diagnosis of generator rolling bearing based on AE-BN[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(8):1896-1903 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0581. |
[19] | WANG J H,ZHOU D Y,CAO J,et al. Fault diagnosis of ball mill rolling bearing based on multi-feature fusion and RF[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(12):3253-3264 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0069. |
[20] | LIU Jiufu, ZHANG Xinzhe, WANG Hengyu, TOMAS DIAS A.M., WANG Zhisheng, YANG Zhong. Partial observable Petri nets fault diagnosis with quantum Bayesian learning[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(7): 1125-1134. doi: 10.13700/j.bh.1001-5965.2021.0010 |