Volume 48 Issue 7
Jul.  2022
Turn off MathJax
Article Contents
LIU Jiufu, ZHANG Xinzhe, WANG Hengyu, et al. Partial observable Petri nets fault diagnosis with quantum Bayesian learning[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(7): 1125-1134. doi: 10.13700/j.bh.1001-5965.2021.0010(in Chinese)
Citation: LIU Jiufu, ZHANG Xinzhe, WANG Hengyu, et al. Partial observable Petri nets fault diagnosis with quantum Bayesian learning[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(7): 1125-1134. doi: 10.13700/j.bh.1001-5965.2021.0010(in Chinese)

Partial observable Petri nets fault diagnosis with quantum Bayesian learning

doi: 10.13700/j.bh.1001-5965.2021.0010
Funds:

National Natural Science Foundation of China 61473144

More Information
  • Corresponding author: LIU Jiufu, E-mail: liujiufu2@126.com
  • Received Date: 08 Jan 2021
  • Accepted Date: 20 Mar 2021
  • Publish Date: 06 May 2021
  • This paper proposes an algorithm to construct a quantum Bayesian Petri nets model for the fault, and uses the sub net model to analyze the fault of Petri net system. According to the reachability identification diagram, which is the transition firing path can not judge the system state, establish the quantum Bayesian Petri nets subnet model to tackle the unobservable faults in partial observable Petri model. Through the quantum interference caused by the uncertain path, recalibrate the conditional probability table of the transition to obtain the quantum probability amplitude table. According to the pre-set of fault transition and quantum Bayesian reasoning, calculates the firing prior probability of transition. The posterior probability is modified by the observable transition in the post-set, and the state of the system is estimated by the maximum posterior probability. When the fault transition is not unique, the fault with the maximum probability is selected as the fault source. Finally, establishes a partial observable Petri nets model of a real fault system. Combined with the probability sequence information of observable label and quantum Bayesian probability estimation, the fault diagnosis of the unobservable parts of the system is carried out to verify the effectiveness of the algorithm with the data in simulation experiment.

     

  • loading
  • [1]
    HENRY D, LE PEUVÉDIC C, STRIPPOLI L, et al. Robust model-based fault diagnosis of thruster faults in spacecraft[J]. IFAC-PapersOnLine, 2015, 48(21): 1078-1083. doi: 10.1016/j.ifacol.2015.09.670
    [2]
    DJEBKO K, PUPPE F, KAYAL H. Model-based fault detection and diagnosis for spacecraft with an application for the SONATE triple cube nano-satellite[J]. Aerospace, 2019, 6(10): 105. doi: 10.3390/aerospace6100105
    [3]
    姜连祥, 李华旺, 杨根庆, 等. 航天器自主故障诊断技术研究进展[J]. 宇航学报, 2009, 30(4): 28-34. https://www.cnki.com.cn/Article/CJFDTOTAL-YHXB200904002.htm

    JIANG L X, LI H W, YANG G Q, et al. Research progress of spacecraft autonomous fault diagnosis technology[J]. Acta astronautics Sinica, 2009, 30(4): 28-34(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-YHXB200904002.htm
    [4]
    XU B, YIN X, YIN X G, et al. Fault diagnosis of power systems based on temporal constrained fuzzy Petri nets[J]. IEEE Access, 2019, 7: 101895-101904. doi: 10.1109/ACCESS.2019.2930545
    [5]
    LEFEBVRE D. Fault diagnosis and prognosis with partially observed stochastic Petri nets[J]. Proceedings of the Institution of Mechanical Engineers. Part O: Journal of Risk and Reliability, 2014, 228(4): 382-396. doi: 10.1177/1748006X14522221
    [6]
    AN R M, LIANG W. Unobservable fuzzy Petri net diagnosis technique[J]. Aircraft Engineering and Aerospace Technology, 2013, 8(3): 215-221.
    [7]
    AMMOUR R, LECLERCQ E, SANLAVILLE E, et al. Faults prognosis using partially observed stochastic Petri-nets: An incremental approach[J]. Discrete Event Dynamic Systems, 2018, 28(2): 247-267. doi: 10.1007/s10626-017-0252-y
    [8]
    郭栋, 熊文真, 徐建新, 等. 基于变精度粗糙集与量子贝叶斯网络的变压器故障诊断研究[J]. 计算机应用与软件, 2017, 34(2): 93-99. https://www.cnki.com.cn/Article/CJFDTOTAL-JYRJ201702016.htm

    GUO D, XIONG W Z, XU J, et al. Research on transformer fault diagnosis based on variable precision rough set and quantum Bayesian network[J]. Computer Applications and Software, 2017, 34(2): 93-99(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JYRJ201702016.htm
    [9]
    刘久富, 张治国, 郑锐, 等. 双组元推进系统的部分可观时间Petri网故障诊断[J]. 系统工程与电子技术, 2018, 40(6): 1337-1344. https://www.cnki.com.cn/Article/CJFDTOTAL-XTYD201806021.htm

    LIU J F, ZHANG Z G, ZHENG R, et al. Fault diagnosis of bipropellant propulsion system using partially observed time Petri nets[J]. Systems Engineering and Electronics, 2018, 40(6): 1337-1344(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-XTYD201806021.htm
    [10]
    LEMM J C. Bayesian approach to inverse time-dependent quantum mechanics[J]. Physics Letters A, 2000, 276(1): 19-24.
    [11]
    MOREIRA C, WICHERT A. Exploring the relations between quantum-like Bayesian networks and decision-making tasks with regard to face stimuli[J]. Journal of Mathematical Psychology, 2017, 78: 86-95. doi: 10.1016/j.jmp.2016.10.004
    [12]
    YI Y H. Fault diagnosis based on Bayesian Petri nets[J]. Sensors and Transducers, 2014, 179(9): 114-120.
    [13]
    CABASINO M P, GIUA A, SEATZU C. Diagnosability of discrete event systems using labeled Petri nets[J]. IEEE Transactions on Automation Science and Engineering, 2014, 11(1): 144-153. doi: 10.1109/TASE.2013.2289360
    [14]
    DON M G, KHAN F. Dynamic process fault detection and diagnosis based on a combined approach of hidden Markov and Bayesian network model[J]. Chemical Engineering Science, 2019, 201: 82-96. doi: 10.1016/j.ces.2019.01.060
    [15]
    SAHU A R, PALEI S K. Real-time fault diagnosis of HEMM using Bayesian network: A case study on drag system of dragline[J]. Engineering Failure Analysis, 2020, 118: 104917. doi: 10.1016/j.engfailanal.2020.104917
    [16]
    DECLERCK P, BONHOMMME P. State estimation of timed labeled Petri nets with unobservable transitions[J]. IEEE Transactions on Automation Science and Engineering, 2014, 11(1): 103-110. doi: 10.1109/TASE.2013.2290314
    [17]
    BASILE F, CORDONE R, PIRODDI L. A branch and bound approach for the design of decentralized supervisors in Petri net models[J]. Automatica, 2015, 52: 322-333. doi: 10.1016/j.automatica.2014.12.004
    [18]
    SHEN Q, QIU J, LIU G, et al. Intermittent fault' s parameter framework and stochastic Petri net based formalization model[J]. Eksploatacja I Niezawodnosc-Maintenance and Reliability, 2016, 18(2): 210-217. doi: 10.17531/ein.2016.2.8
    [19]
    WANG L, CHEN Q, GAO Z, et al. Knowledge representation and general Petri net models for power grid fault diagnosis[J]. IET Generation, Transmission & Distribution, 2015, 9(9): 866-873.
    [20]
    ZHANG Z D, ZHU J L, PAN F. Fault detection and diagnosis for data incomplete industrial systems with new Bayesian network approach[J]. Journal of Systems Engineering and Electronics, 2013, 24(3): 500-511. doi: 10.1109/JSEE.2013.00058
    [21]
    PENSAR J, NYMAN H, LINTUSAARI J, et al. The role of local partial independence in learning of Bayesian networks[J]. International Journal of Approximate Reasoning, 2016, 69: 91-105. doi: 10.1016/j.ijar.2015.11.008
    [22]
    YOON S. In-situ sensor calibration in an operational air-handling unit coupling autoencoder and Bayesian inference[J]. Energy and Buildings, 2020, 221: 110026.
    [23]
    OMOREGBEE H O, HEYNS P S. Fault detection in roller bearing operating at low speed and varying loads using Bayesian robust new hidden Markov model[J]. Journal of Mechanical Science and Technology, 2018, 32(9): 4025-4036. doi: 10.1007/s12206-018-0802-8
    [24]
    鲁峰, 黄金泉, 吕怡秋, 等. 基于非线性自适应滤波的发动机气路部件健康诊断方法[J]. 航空学报, 2013, 34(11): 2529-2538. https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201311011.htm

    LU F, HUANG J Q, LV Y Q, et al. Aircraft engine gas-path components health diagnosis based on nonlinear adaptive filters[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(11): 2529-2538(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201311011.htm
    [25]
    陈金豹, 翟国富, 王淑娟, 等. 航天电子设备多余物检测信号特征的影响因素分析[J]. 系统工程与电子技术, 2013, 35(4): 889-894. https://www.cnki.com.cn/Article/CJFDTOTAL-XTYD201304038.htm

    CHEN J B, ZHAI G F, WANG S J, et al. Factors affecting characteristics of acoustic signals in particle impact noise detection for aerospace devices[J]. Systems Engineering and Electronics, 2013, 35(4): 889-894(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-XTYD201304038.htm
    [26]
    SHARDA B, BANERJEE A. Robust manufacturing system design using multi objective genetic algorithms, Petri nets and Bayesian uncertainty representation[J]. Journal of Manufacturing Systems, 2013, 32(2): 315-324.
    [27]
    ZHU M N, HAN G, GUO H. Optimized fault diagnosis based on FMEA-style CBR and BN for embedded software system[J]. The International Journal of Advanced Manufacturing Technology, 2018, 94(9): 3441-3453.
    [28]
    RATH Y, GLIELMO A, BOOTH G H. A Bayesian inference framework for compression and prediction of quantum states[J]. Journal of Chemical Physics, 2020, 153(12): 124108.
    [29]
    HUANG Z M, YANG L, JIANG W. Uncertainty measurement with belief entropy on the interference effect in the quantum-like Bayesian networks[J]. Applied Mathematics and Computation, 2019, 347: 417-428.
    [30]
    PIENAAR J. Quantum causal models via quantum Bayesianism[J]. Physical Review A, 2020, 101(1): 012104.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(14)  / Tables(3)

    Article Metrics

    Article views(374) PDF downloads(246) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return