Gao Jinhai, Wang Jianjun, Ma Yanhong, et al. Numerical simulation of three dimensional wall temperature of combustor liner based on thermal-fluid-solid coupling method[J]. Journal of Beijing University of Aeronautics and Astronautics, 2011, 37(3): 300-304. (in Chinese)
Citation: LIU Hu, LIU Hua, YANG Jialinget al. Theoretical model for a porous projectile striking on flat rigid anvil[J]. Journal of Beijing University of Aeronautics and Astronautics, 2016, 42(7): 1461-1468. doi: 10.13700/j.bh.1001-5965.2015.0471(in Chinese)

Theoretical model for a porous projectile striking on flat rigid anvil

doi: 10.13700/j.bh.1001-5965.2015.0471
  • Received Date: 14 Jul 2015
  • Publish Date: 20 Jul 2016
  • Taylor impact is often applied to the determination of the dynamic yield stress of materials. For theoretical analysis of the Taylor impact of porous projectiles, the relationship between the density of a compressed porous projectile and the compressive plastic strain is very important. This paper proposes an exact density model for the compressible porous projectile by inducing the plastic Poisson's ratio, and further, an analytical model is established for the compressible porous projectile striking on a flat rigid anvil. As the plastic Poisson's ratio is a constant, the first order Taylor series expansion of the compression density ratio model can be reduced to the existing model. As the plastic Poisson's ratio is a function of the compressive plastic strain and the relative density, the relative density has a major influence on the impact response and the final deformation of the projectile, but the duration of impact-contact process is almost unaffected. The initial velocity of the projectile has considerable effects on both the final deformation of the projectile and the duration of impact-contact process. The present theoretical model is useful in analyzing the dynamic behavior of porous materials.

     

  • [1]
    LU G X,YU T X.Energy absorption of structures and materials[M].Cambridge: Woodhead Publishing Ltd.,2003:1-10.
    [2]
    余同希,邱信明.冲击动力学[M].北京:清华大学出版社,2011:27-36.YU T X,QIU X M.Impact dynamics[M].Beijing:Tsinghua University Press,2011:27-36(in Chinese).
    [3]
    TAYLOR G.The use of flat-ended projectiles for determining dynamic yield stress I:Theoretical considerations[J].Proceedings of the Royal Society of London A,1948,194(1038):289-299.
    [4]
    WHIFFIN A C.The use of flat-ended projectiles for determining dynamic yield stress II:Tests on various metallic materials[J].Proceedings of the Royal Society of London A,1948,194(1038):300-322.
    [5]
    HAWKYARD J B.A theory for the mushrooming of flat-ended projectiles impinging on a flat rigid anvil,using energy consideration[J].International Journal of Mechanical Sciences,1969,11(3):313-333.
    [6]
    JONES S E,GILLIS P P,FOSTER JR J C,et al.A one-dimensional,two-phase flow model for Taylor impact specimens[J].Journal of Engineering Materials and Technology,1991,113(2):228-235.
    [7]
    JONES S E,DRINKARD J A,RULE W K,et al.An elementary theory for the Taylor impact test[J].International Journal of Impact Engineering,1998,21(1-2):1-13.
    [8]
    BRÜIG M,DRIEMEIER L.Numerical simulation of Taylor impact tests[J].International Journal of Plasticity,2007,23(12):1979-2003.
    [9]
    TENG X,WIERZBICKI T,HIERMAIER S,et al.Numerical prediction of fracture in the Taylor test[J].International Journal of Solids and Structures,2005,42(9):2929-2948.
    [10]
    MA X,ZHANG D Z,GIGUERE P T,et al.Axisymmetric computation of Taylor cylinder impacts of ductile and brittle materials using original and dual domain material point methods[J].International Journal of Impact Engineering,2013,54:96-104.
    [11]
    HUTCHINGS I M.Estimation of yield stress in polymers at high strain-rates using Taylor's impact technique[J].Journal of the Mechanics and Physics of Solids,1978,26(5):289-301.
    [12]
    胡文军,张方举,陈裕泽,等.聚碳酸酯的Taylor撞击实验及光塑性分析[J].高分子材料科学与工程,2010,26(10):115-117.HU W J,ZHANG F J,CHEN Y Z,et al.Taylor impact test of polycarbonate and photoplastic analysis[J].Polymer Materials Science and Engineering,2010,26(10):115-117(in Chinese).
    [13]
    LU G X,WANG B,ZHANG T G.Taylor impact test for ductile porous materials part I:Theory[J].International Journal of Impact Engineering,2001,25(10):981-991.
    [14]
    WANG B,ZHANG J,LU G X.Taylor impact test for ductile porous materials part II:Experiments[J].International Journal of Impact Engineering,2003,28(5):499-511.
    [15]
    王长峰.泡沬金属的动态压溃模型和率敏感性分析[D].合肥:中国科技大学,2013.WANG C F.Dynamic crushing models and rate-sensitivity analysis of metallic foams[D].Hefei:University of Science and Technology of China,2013(in Chinese).
  • Relative Articles

    [1]XIAO Y,LI Y,LI D S,et al. Influence of curing stress relaxation on profile accuracy of composites tools[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(3):824-832 (in Chinese). doi: 10.13700/j.bh.1001-5965.2023.0109.
    [2]WANG Y J,CHEN Q Y,GAO X Z,et al. Guidance and control method for dynamic net-recovery of UAV and the flight test verification[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(2):487-497 (in Chinese). doi: 10.13700/j.bh.1001-5965.2023.0043.
    [3]LU X H,CAI J,ZHANG Z G,et al. Adequacy and suitability of airworthiness clause of bird strike based on bird situation in China[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(9):2810-2818 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0726.
    [4]HUANG Mengdie, WANG Lufeng, HUANG Xuxing, LI Shuang. Space target collision risk analysis algorithm based on the square Mahalanobis distance[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2024.0167
    [5]LI Jun, LI Wenlong, GAO Tenglong, LI Yanan, LIU Jingli. Temperature correction method for load measurement of aircraft composite structures[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2023.0853
    [6]WANG Dequan, ZHAO Yuxuan, YUAN Xiangyue, WANG Qingchun, CHEN Zhongjia. Design and simulation of large composite material curing furnace based on flow field uniformity[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2024.0370
    [7]LI Xing, LOU Yang, DONG Jia-qi, XU Ji-feng, WU Hai-hong, SHI Wei-feng. Research on the application of composite structural battery in civil aircraft[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2023.0701
    [8]LIU S Y,GAO J,SUN K W. Analysis of energy receiving by rigid cell array of solar airship[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(11):3542-3552 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0820.
    [9]XU N,XU L L,HE F C. Total focusing imaging in anisotropic additive manufacturing components using ultrasonic array[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(5):1063-1070 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0404.
    [10]LIU Y,ZHOU J P,ZHANG X T. Application and prospect of additive manufacturing technology in manned space engineering[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(1):83-91 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0455.
    [11]WU Yu-zhan, LI Chen-long, GONG Guang-hong, LU Jun-yan. Finite-time path tracking control of unmanned vehicles based on multi-dimensional Taylor network[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2023.0610
    [12]LI C,SHEN Q,WANG L X,et al. Pseudo loosely-integrated navigation of low-cost MEMS-INS/GPS with insufficient observable satellites[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(4):869-878 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0131.
    [13]MA M,YU J,FAN W R. CFRP material detection based on improved joint sparse EIT algorithm[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(2):265-272 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0244.
    [14]ZHAO Z B,YANG Z W,LI Y,et al. Infrared radiation characteristics of carbon/glass hybrid composites under low-velocity impact[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(1):177-186 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0174.
    [15]ZHANG H J,LI H Q,KANG H L,et al. High temperature thermal conductivity estimation method of inorganic-organic hybrid phenolic composites[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(1):92-99 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0170.
    [16]SU D C,WANG Z Z,WU L H,et al. Flight characteristics of coaxial-rigid-rotor helicopter during deck landing[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(4):832-841 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0358.
    [17]WANG Rong, YU Yalin, WANG Lechen, MO Shenzhong, HUANG Yuqing, ZHOU Xiang. Effects of prepreg ambient-temperature storage life on mechanical properties of MT700/603 composites[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(12): 2434-2441. doi: 10.13700/j.bh.1001-5965.2021.0121
    [18]ZHANG Chao, LIU Jianchun, FANG Xin. Damage analysis in composite laminates under low velocity oblique impact[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(12): 2388-2397. doi: 10.13700/j.bh.1001-5965.2021.0154
    [19]XIA Fei, XUE Jianghong, HE Zanhang, JIN Fusong. Interfacial crack growth of delaminated composite laminates under hygrothermal environment[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(12): 2460-2472. doi: 10.13700/j.bh.1001-5965.2021.0137
    [20]YANG Zhan-gang, KE Zhong-shu, YANG Xu-wei, BAO Xing-wang. Analysis of the influence of finishing process on the electrical properties of composite skin[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2022-0763
  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-042025-0505101520
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 15.4 %FULLTEXT: 15.4 %META: 82.1 %META: 82.1 %PDF: 2.5 %PDF: 2.5 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 5.4 %其他: 5.4 %上海: 1.2 %上海: 1.2 %东京: 0.2 %东京: 0.2 %北京: 5.4 %北京: 5.4 %华盛顿州: 0.5 %华盛顿州: 0.5 %哥伦布: 1.0 %哥伦布: 1.0 %唐山: 0.2 %唐山: 0.2 %商丘: 0.2 %商丘: 0.2 %天津: 0.2 %天津: 0.2 %太原: 0.7 %太原: 0.7 %张家口: 1.2 %张家口: 1.2 %扬州: 0.2 %扬州: 0.2 %新乡: 0.5 %新乡: 0.5 %杭州: 1.0 %杭州: 1.0 %深圳: 11.5 %深圳: 11.5 %漯河: 1.0 %漯河: 1.0 %石家庄: 0.5 %石家庄: 0.5 %芒廷维尤: 24.8 %芒廷维尤: 24.8 %芝加哥: 1.2 %芝加哥: 1.2 %西宁: 39.2 %西宁: 39.2 %西安: 0.5 %西安: 0.5 %诺沃克: 0.2 %诺沃克: 0.2 %郑州: 1.7 %郑州: 1.7 %长沙: 1.0 %长沙: 1.0 %马湾: 0.2 %马湾: 0.2 %其他上海东京北京华盛顿州哥伦布唐山商丘天津太原张家口扬州新乡杭州深圳漯河石家庄芒廷维尤芝加哥西宁西安诺沃克郑州长沙马湾

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views(910) PDF downloads(474) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return