Volume 42 Issue 11
Nov.  2016
Turn off MathJax
Article Contents
LIN Qing, CAI Zhihao, YAN Kun, et al. Influence of pitch manipulation modes on controllability and stability of autogyro[J]. Journal of Beijing University of Aeronautics and Astronautics, 2016, 42(11): 2454-2465. doi: 10.13700/j.bh.1001-5965.2015.0776(in Chinese)
Citation: LIN Qing, CAI Zhihao, YAN Kun, et al. Influence of pitch manipulation modes on controllability and stability of autogyro[J]. Journal of Beijing University of Aeronautics and Astronautics, 2016, 42(11): 2454-2465. doi: 10.13700/j.bh.1001-5965.2015.0776(in Chinese)

Influence of pitch manipulation modes on controllability and stability of autogyro

doi: 10.13700/j.bh.1001-5965.2015.0776
  • Received Date: 25 Nov 2015
  • Rev Recd Date: 27 Jan 2016
  • Publish Date: 20 Nov 2016
  • To study the influence of two manipulation modes on flight dynamics characteristics of autogyro, an example autogyro UAV was chosen and modeled based on closed-form blade element method. Then the differences of the two modes in trim results, stability and handling characteristics were analyzed in the whole speed envelope. The results indicate that each manipulation mode has its advantages and disadvantages:for the rotor manipulation mode, the trim pitch angle has little change and the phugoid mode is stable, but the spiral mode is unstable in the whole envelope. For the elevator manipulation mode, the spiral mode is stable at relatively high speed and the attainable pitch moment is larger, but the trim angle of attack is negative at high speed and the speed static stability is negative. Then two prototype autogyro UAVs were assembled and flight-tested for the two manipulation modes respectively. The autorotation of the main rotor during the whole flight were analyzed. Attitude control laws were designed and flight-tested for the two prototype UAVs, which both achieve attitude tracking relatively well. Finally, the model of the autogyro UAV was validated with the flight test data.

     

  • loading
  • [1]
    LEISHMAN J G.Development of the autogiro:A technical perspective[J].Journal of Aircraft,2004,41(4):765-781.
    [2]
    王焕瑾,高正.自转旋翼的气动优势和稳定转速[J].航空学报,2001,22(4):337-339.WANG H J,GAO Z.Aerodynamic virtue and steady rotary speed of autorotating rotor[J].Acta Aeronoutica et Astronautica Sinica,2001,22(4):337-339(in Chinese).
    [3]
    HOUSTON S S,THOMSON D G.The aerodynamics of gyroplanes:CAA Paper 2009/02[R].West Sussex:Civil Aviation Authority,2010.
    [4]
    HOUSTON S S.Identification of autogyro longitudinal stability and control characteristics[J].Journal of Guidance,Control,and Dynamics,1998,21(3):391-399.
    [5]
    THOMSON D G,HOUSTON S S,SPATHOPOULOS V M.Experiments in autogiro airworthiness for improved handling qualities[J].Journal of the American Helicopter Society,2005,50(4):295-301.
    [6]
    BAGIEV M,THOMSON D G.Handling qualities evaluation of an autogiro against the existing rotorcraft criteria[J].Journal of Aircraft,2009,46(1):168-174.
    [7]
    崔钊,韩东,李建波,等.加装格尼襟翼的自转旋翼气动特性研究[J]. 航空学报,2012,33(10):1791-1799.CUI Z,HAN D,LI J B,et al.Study on aerodynamic characteristics of auto-rotating rotors with Gurney flaps[J].Acta Aeronoutica et Astronautica Sinica,2012,33(10):1791-1799(in Chinese).
    [8]
    朱清华.自转旋翼飞行器总体设计关键技术研究[D].南京:南京航空航天大学,2007:37-48.ZHU Q H.Research on key technologies of gyroplane preliminary design[D].Nanjing:Nanjing University of Aeronautics and Astronautics,2007:37-48(in Chinese).
    [9]
    王俊超,李建波,韩东.自转旋翼机飞行性能理论建模技术[J].航空学报,2014,35(12):3244-3253.WANG J C,LI J B,HAN D.Theoretical modeling technology for gyroplane flight performance[J].Acta Aeronoutica et Astronautica Sinica,2014,35(12):3244-3253(in Chinese).
    [10]
    王俊超,李建波.自转旋翼/机翼组合构型飞行器飞行动力学特性[J].南京航空航天大学学报,2011,43(3):399-405.WANG J C,LI J B.Flight dynamics characteristics of autorotating rotor/wing combination aircraft[J].Journal of Nanjing University of Aeronautics and Astronautics,2011,43(3):399-405(in Chinese).
    [11]
    王俊超,李建波.机翼对自转旋翼机纵向稳定性的影响[J].航空学报,2014,35(1):151-160.WANG J C,LI J B.Effects of wing on autogyro longitudinal stability[J].Acta Aeronoutica et Astronautica Sinica,2014,35(1):151-160(in Chinese).
    [12]
    陈淼.自转式无人旋翼机飞行控制技术研究[D].南京:南京航空航天大学,2012:16-88.CHEN M.Research on flight control technologies for unmanned gyroplane[D].Nanjing:Nanjing University of Aeronautics and Astronautics,2012:16-88(in Chinese).
    [13]
    PROUTY R W.Helicopter performance,stability,and control[M].Boston:PWS Engineering,1986:163-187.
    [14]
    陈仁良,高正.直升机飞行动力学[M].北京:科学出版社,2003:18-19.CHEN R L,GAO Z.Helicopter flight dynamics[M].Beijing:Science Press,2003:18-19(in Chinese).
    [15]
    MATTHEW J T.Elevators in autogyro propeller wake enable low-speed pitch control[J].Aircraft Engineering and Aerospace Technology,2011,83(3):154-159.
    [16]
    MATTHEW J T,CARTER R G.Pitch control benefits of elevators for autogyros in low-speed forward flight[C]//Proceedings of 43rd AIAA Aerospace Sciences Meeting and Exhibit.Reston:AIAA,2005:11953-11961.
    [17]
    LOPEZ C A,WELLS V L.Dynamics and stability of an autorotating rotor/wing unmanned aircraft[J].Journal of Guidance,Control,and Dynamics,2004,27(2):258-270.
    [18]
    HOUSTON S S.Validation of a rotorcraft mathematical model for autogyro simulation[J].Journal of Aircraft,2000,37(3):403-409.
    [19]
    HOUSTON S S.Identification of gyroplane lateral/directional stability and control characteristics from flight test[J].Proceedings of the Institution of Mechanical Engineers,Part G:Journal of Aerospace Engineering,1998,212(4):271-285.
    [20]
    STEVENS B L,LEWIS F L.Aircraft control and simulation[M].Hoboken,NJ:John Wiley & Sons,2003:101-138.
    [21]
    DREIER M E.直升机和倾转旋翼飞行器飞行仿真引论[M].孙传伟,译.北京:航空工业出版社,2014:323-346.DREIER M E.Introduction to helicopter and tiltrotor simulation[M].Translated by SUN C W.Beijing:Aviation Industry Press,2014:323-346(in Chinese).
    [22]
    闫坤,蔡志浩,林清,等.带预旋自转旋翼机起降阶段关键飞行参数测量方法[C]//IEEE Chinese Guidance,Navigation and Control Conference 2014,2014:1643-1648.YAN K,CAI Z H,LIN Q,et al.Key parameters measurement method in takeoff and landing of autogyro with prerotating[C]//IEEE Chinese Guidance,Navigation and Control Conference 2014,2014:1643-1648(in Chinese).
    [23]
    FUTABA.Futaba SBS-01RM Magnetic RPM Sensor[EB/OL].Japan:Futaba radio control(RC-R/C) systems and accessories,2015[2015-11-20].http://www.futabarc.com/accessories/futm0850.html.
    [24]
    杨金鹏,蔡志浩,林清,等.一种复合式短距起降无人机自动飞行控制系统设计[C]//IEEE Chinese Guidance,Navigation and Control Conference 2014,2014:1044-1049.YANG J P,CAI Z H,LIN Q,et al.Autonomous flight control system design for STOL flight of a compound autogyro UAV[C]//IEEE Chinese Guidance,Navigation and Control Conference 2014,2014:1044-1049(in Chinese).
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views(724) PDF downloads(733) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return