Abstract:
Based on the whole life-cycle analysis, the feedstock sustainability has been evaluated for alternative aviation fuels. Eight sources, including coal, natural gas, algae, jatropha, soybean, palm, rapeseed and camelina, have been compared with petroleum-based aviation fuel in energy consumption, fossil fuel consumption, water consumption, greenhouse gas (GHG) emissions, and PM10 and PM2.5 emissions. The whole life cycle concluded feedstock production, fuel refining and combustion application. In the first stage of feedstock production, energy and emissions comprise the influence of infrastructure construction. The fuel refining process considered the emissions caused by nested electricity utilization. This paper provides theoretical and data support to assess the sustainable feedstock for alternative aviation fuel. The results indicate that compared with petroleum-based one, the GHG emissions of biomass all decrease in feedstock production stage, and soybean conducts the minimum GHG emission. Jatropha-based fuel gives the highest PM10 and PM2.5 emissions as the result of high fertilizer input. During the fuel refining stage, coal-based Fischer-Tropsch aviation fuel performs the highest energy consumption and GHG emission. Among eight feedstocks, coal-based Fischer-Tropsch aviation fuel shows the highest GHG emission in the whole life cycle, while algae-based aviation fuel shows the lowest GHG emission and followed by soybean. Owing to non-arable land and non-competition with food, algae are very promising as the sustainable feedstock for alternative aviation fuel in the future.