Volume 43 Issue 4
Apr.  2017
Turn off MathJax
Article Contents
WU Hongyu, WANG Chunjie, DING Jianzhong, et al. Soft landing performance optimization for novel lander based on multiple working conditions[J]. Journal of Beijing University of Aeronautics and Astronautics, 2017, 43(4): 776-781. doi: 10.13700/j.bh.1001-5965.2016.0296(in Chinese)
Citation: WU Hongyu, WANG Chunjie, DING Jianzhong, et al. Soft landing performance optimization for novel lander based on multiple working conditions[J]. Journal of Beijing University of Aeronautics and Astronautics, 2017, 43(4): 776-781. doi: 10.13700/j.bh.1001-5965.2016.0296(in Chinese)

Soft landing performance optimization for novel lander based on multiple working conditions

doi: 10.13700/j.bh.1001-5965.2016.0296
More Information
  • Corresponding author: WANG Chunjie, E-mail: wangcj@buaa.edu.cn
  • Received Date: 14 Apr 2016
  • Accepted Date: 13 May 2016
  • Publish Date: 20 Apr 2017
  • A rigid-flexible coupled dynamics model was established for simulating and analyzing the soft landing process of the novel leg type lander. Three groups of bad landing conditions, in which the lander most easily overturns, bottom surface of the lander most easily collides with rocks on the surface of the planet, and body of the lander bears the greatest impact force, were found by iterating over landing parameters. According to the configuration of buffering mechanism, design variables of optimization were selected. Based on the three groups of bad landing conditions and non-dominated sorting genetic algorithm Ⅱ (NSGA-Ⅱ), a multi-objective optimization method was applied to enhance the ability of the lander to resist overturning, reduce the possibility that the bottom surface of lander collides with rocks on the surface of the planet, and reduce the impact on the body of lander. In the simulation using optimized parameters, the model does not overturn any longer. The minimum distance between bottom surface of the landing platform of the lander and surface of the planet increases by 4.2%, and the impact on the body of lander reduces by 12.1%.

     

  • loading
  • [1]
    杨建中, 满剑锋, 曾福明, 等."嫦娥三号"着陆缓冲机构的研究成果及其应用[J].航天返回与遥感, 2014, 35(6):20-27. http://www.cnki.com.cn/Article/CJFDTOTAL-HFYG201406004.htm

    YANG J Z, MAN J F, ZENG F M, et al.Achievements and applications of landing gear for Chang'e-3 lander[J].Spacecraft Recovery & Remote Sensing, 2014, 35(6):20-27(in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-HFYG201406004.htm
    [2]
    李萌. 腿式着陆缓冲装置吸能特性及软着陆过程动力学仿真研究[D]. 哈尔滨: 哈尔滨工业大学, 2013: 1-10.

    LI M.Research on energy absorbers of legged-type lander and dynamic simulation on its soft landing process[D].Harbin:Harbin Institute of Technology, 2013:1-10(in Chinese).
    [3]
    蒋万松, 黄伟, 沈祖炜, 等.月球探测器软着陆动力学仿真[J].宇航学报, 2011, 32(3):462-469. http://www.cnki.com.cn/Article/CJFDTOTAL-YHXB201002007.htm

    JIANG W S, HUANG W, SHEN Z W, et al.Soft landing dynamic simulation for lunar explorer[J].Journal of Astronautics, 2011, 32(3):462-469(in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-YHXB201002007.htm
    [4]
    ADAM D S, MIGUEL S M, TOMMASO P R, et al.Mars science laboratory entry, descent, and landing system development challenges[J].Journal of Spacecraft and Rockets, 2014, 51(4):994-1003. doi: 10.2514/1.A32866
    [5]
    DING J Z, WANG C J.Fast modeling for lunar landing dynamics analysis:AIAA-2016-1191[R].Reston:AIAA, 2016.
    [6]
    刘晓宇. 着陆器软着陆缓冲稳定性仿真分析[D]. 长沙: 湖南大学, 2013: 19-28.

    LIU X Y.Simulation analysis on soft landing's buffer and stability of lunar exploration[D].Changsha:Hunan University, 2013:19-28(in Chinese).
    [7]
    陈金宝, 聂宏, 万峻麟.深空探测着陆器数字化设计及着陆性能影响因素[J].航空学报, 2014, 35(2):541-554. http://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201402026.htm

    CHEN J B, NIE H, WAN J L.Digital design and landing performance influence factors of deep space lander[J].Acta Aeronautica et Astronautica Sinica, 2014, 35(2):541-554(in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201402026.htm
    [8]
    罗昌杰, 邓宗全, 刘荣强, 等.基于零力矩点理论的腿式着陆器着陆稳定性研究[J].机械工程学报, 2010, 46(9):38-45. http://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201009008.htm

    LUO C J, DENG Z Q, LIU R Q, et al.Landing stability investigation of legged-type spacecraft lander based on zero moment point theory[J].Journal of Mechanical Engineering, 2010, 46(9):38-45(in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201009008.htm
    [9]
    罗松柏, 赵永嘉.月球软着陆动力学分析与仿真[J].北京航空航天大学学报, 2012, 38(2):185-190. http://bhxb.buaa.edu.cn/CN/abstract/abstract12199.shtml

    LUO S B, ZHAO Y J.Dynamic analysis and simulation of soft-landing for lunar lander[J].Journal of Beijing University of Aeronautics and Astronautics, 2012, 38(2):185-190(in Chinese). http://bhxb.buaa.edu.cn/CN/abstract/abstract12199.shtml
    [10]
    逯运通, 宋顺广, 王春洁.基于刚柔耦合模型的月球着陆器动力学分析[J].北京航空航天大学学报, 2010, 36(11):1348-1352. http://bhxb.buaa.edu.cn/CN/abstract/abstract11816.shtml

    LU Y T, SONG S G, WANG C J.Dynamic analysis for lunar lander based on rigid-flexible coupled model[J].Journal of Beijing University of Aeronautics and Astronautics, 2010, 36(11):1348-1352(in Chinese). http://bhxb.buaa.edu.cn/CN/abstract/abstract11816.shtml
    [11]
    王家俊, 王春洁, 宋顺广.基于响应面法的月球着陆器软着陆性能优化[J].北京航空航天大学学报, 2014, 40(5):707-711. http://bhxb.buaa.edu.cn/CN/abstract/abstract12935.shtml

    WANG J J, WANG C J, SONG S G.Performance optimization of lunar lander based on response surface methodology[J].Journal of Beijing University of Aeronautics and Astronautics, 2014, 40(5):707-711(in Chinese). http://bhxb.buaa.edu.cn/CN/abstract/abstract12935.shtml
    [12]
    BRIAN C S, MELISSA S, PETER I.Telecommunications performance during entry, descent, and landing of the Mars science laboratory[J].Journal of Spacecraft and Rockets, 2014, 51(4):1237-1250. doi: 10.2514/1.A32790
    [13]
    ZUPP G A, DOIRON H H.A mathematical procedure for predicting the touchdown dynamics of a soft-landing vehicle:NASA-TN-D-7045[R].Washington, D.C.:NASA, 1971.
    [14]
    MARLER R T, ARORA J S.Survey of multi-objective optimization methods for engineering[J].Structural and Multidisciplinary Optimization, 2004, 26(6):369-395. doi: 10.1007/s00158-003-0368-6
    [15]
    黄晶晶, 郑龙席, 刘钢旗, 等.双盘转子系统优化算法与试验[J].航空动力学报, 2016, 31(1):65-71. http://www.cnki.com.cn/Article/CJFDTOTAL-HKDI201601010.htm

    HUANG J J, ZHENG L X, LIU G Q, et al.Optimization algorithm and experiment of two-disk rotor system[J].Journal of Aerospace Power, 2016, 31(1):65-71(in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-HKDI201601010.htm
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(6)

    Article Metrics

    Article views(900) PDF downloads(791) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return