Volume 43 Issue 8
Aug.  2017
Turn off MathJax
Article Contents
LIU Liyuan, LI Yachao, YAN Chaoet al. Numerical simulation of effect of nozzle layout on jet lateral control for missiles[J]. Journal of Beijing University of Aeronautics and Astronautics, 2017, 43(8): 1632-1639. doi: 10.13700/j.bh.1001-5965.2016.0603(in Chinese)
Citation: LIU Liyuan, LI Yachao, YAN Chaoet al. Numerical simulation of effect of nozzle layout on jet lateral control for missiles[J]. Journal of Beijing University of Aeronautics and Astronautics, 2017, 43(8): 1632-1639. doi: 10.13700/j.bh.1001-5965.2016.0603(in Chinese)

Numerical simulation of effect of nozzle layout on jet lateral control for missiles

doi: 10.13700/j.bh.1001-5965.2016.0603
More Information
  • Corresponding author: YAN Chao, E-mail:yanchao@buaa.edu.cn
  • Received Date: 18 Jul 2016
  • Accepted Date: 04 Nov 2016
  • Publish Date: 20 Aug 2017
  • In order to keep the motility in the thin atmosphere, air vehicles usually employ reaction control system (RCS), but in supersonic flow, it leads to complex jet interaction flow field on the surface of air vehicles, which has enormous influence on flight control. In order to improve the regularity understanding of jet lateral control, a model without any vane and a model with four tail vanes were used to study the sonic jet control effects in supersonic cross-flow by numerical simulation. The investigation of the influence of the jet location on the jet lateral control was conducted and the quantitative analysis of the contribution of different characteristic regions on the sweep to the jet lateral control was given. The numerical results indicate that as to wing-body configuration, the backward moving of the jet location and the increase of Mach number observably improve the jet lateral control effect; the amplification coefficient of the jet interaction force increases with the increasing angle of attack, and decreases with the increasing static pressure on condition that the jet is located before the tail vane; however, the law is opposite on condition that the jet is located after the tail vane; wing-body configuration, compared to body-alone configuration, does not have advantages on jet lateral control effects under some jet location and flow conditions.

     

  • loading
  • [1]
    李素循.激波与边界层主导的复杂流动[M].北京:科学出版社, 2007:167-170.

    LI S X.Complicated flow governed by shock and boundary layer[M].Beijing:Science Press, 2007:167-170(in Chinese).
    [2]
    SRIVASTAVA B.Computational analysis and validation for lateral jet controlled missiles[J].Journal of Spacecraft and Rockets, 1997, 34(5):584-592. doi: 10.2514/2.3272
    [3]
    DESPIRITO J.Factors affecting reaction jet interaction effects on projectiles:AIAA-2011-3031[R].Reston:AIAA, 2011.
    [4]
    BUCK G M.Experimental measurement of RCS jet interaction effect on a capsule entry vehicle:AIAA-2008-1229[R].Reston:AIAA, 2008.
    [5]
    ZUKOSKI E, SPAID F.Secondary injection of gases into supersonic flow[J].AIAA Journal, 1964, 2(10):1689-1696. doi: 10.2514/3.2653
    [6]
    CHAMPINGY P, LACAU R.Lateral jet control for tactical missiles:N95-14448[R].Tousouse:ONERA, 1994.
    [7]
    GRUBER M, NEJAD A, CHEN T.Transverse injection from circular and elliptic nozzles into a supersonic cross flow[J].Journal of Propulsion and Power, 2000, 16(3):449-457. doi: 10.2514/2.5609
    [8]
    GRAHAM M, WEINACHT P.Numerical investigation of supersonic jet interaction for axisymmetric bodies[J].Journal of Spacecraft and Rockets, 2000, 37(5):675-683. doi: 10.2514/2.3617
    [9]
    BRANDEIS J, GILL J.Experimental investigation of super-and hypersonic jet interaction on missile configurations[J].Journal of Spacecraft and Rockets, 1998, 35(3):296-302. doi: 10.2514/2.3354
    [10]
    李斌, 王学占, 刘仙名.大攻角侧向多喷干扰流场特性数值模拟[J].航空学报, 2015, 36(9):2828-2839. http://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201509006.htm

    LI B, WANG X Z, LIU X M.Numerical investigation of multi-lateral jets interactions flow characteristics at high angle of attack[J].Acta Aeronautica et Astronautica Sinica, 2015, 36(9):2828-2839(in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201509006.htm
    [11]
    陈坚强, 张毅锋, 江定武, 等.侧向多喷口干扰复杂流动数值模拟研究[J].力学学报, 2008, 40(6):735-743. doi: 10.6052/0459-1879-2008-6-2008-020

    CHEN J Q, ZHANG Y F, JIANG D W, et al.Numerical simulation of complex flow with multi lateral jets interactions[J].Chinese Journal of Theoretical and Applied Mechanics, 2008, 40(6):735-743(in Chinese). doi: 10.6052/0459-1879-2008-6-2008-020
    [12]
    阎超.计算流体力学方法与应用[M].北京:北京航空航天大学出版社, 2006:18-25.

    YAN C.Method and application of computational fluid dynamics[M].Beijing:Beihang University Press, 2006:18-25(in Chinese).
    [13]
    李亚超, 阎超, 张翔, 等.超声速横向喷流侧向控制的数值模拟[J].北京航空航天大学学报, 2015, 41(6):1073-1079. http://bhxb.buaa.edu.cn/CN/abstract/abstract13291.shtml

    LI Y C, YAN C, ZHANG X, et al.Numerical simulation of lateral control in supersonic cross jet flow[J].Journal of Beijing University of Aeronautics and Astronautics, 2015, 41(6):1073-1079(in Chinese). http://bhxb.buaa.edu.cn/CN/abstract/abstract13291.shtml
    [14]
    GRAHAM M, WEINACHT P, BRANDEIS J.Numerical investigation of supersonic jet interaction for finned bodies[J].Journal of Spacecraft and Rochets, 2002, 39(3):376-383. doi: 10.2514/2.3836
    [15]
    耿云飞. 高超声速飞行器减阻防热新方法数值模拟研究[D]. 北京: 北京航空航天大学, 2011. http://www.cqvip.com/QK/91029X/201103/37920869.html

    GENG Y F.Numerical simulation of the new methods of drag reduction and themal protection in the hypersonic vehicle design[D].Beijing:Beihang University, 2011(in Chinese). http://www.cqvip.com/QK/91029X/201103/37920869.html
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(18)

    Article Metrics

    Article views(742) PDF downloads(512) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return