Volume 43 Issue 9
Sep.  2017
Turn off MathJax
Article Contents
WEI Qiang, LIANG Guozhu. Performance simulation of a 76 km simulated high-altitude test system for liquid attitude-control engines[J]. Journal of Beijing University of Aeronautics and Astronautics, 2017, 43(9): 1779-1788. doi: 10.13700/j.bh.1001-5965.2016.0754(in Chinese)
Citation: WEI Qiang, LIANG Guozhu. Performance simulation of a 76 km simulated high-altitude test system for liquid attitude-control engines[J]. Journal of Beijing University of Aeronautics and Astronautics, 2017, 43(9): 1779-1788. doi: 10.13700/j.bh.1001-5965.2016.0754(in Chinese)

Performance simulation of a 76 km simulated high-altitude test system for liquid attitude-control engines

doi: 10.13700/j.bh.1001-5965.2016.0754
More Information
  • Corresponding author: LIANG Guozhu, E-mail:lgz@buaa.edu.cn
  • Received Date: 21 Sep 2016
  • Accepted Date: 14 Oct 2016
  • Publish Date: 20 Sep 2017
  • To study the performance of a 76 km high-altitude test system for attitude-control liquid rocket engines, a transient test system simulation model with lumped parameters was built, which considers the phase change of the exhaust. The system model consists of a vacuum pumping sub-model, a liquid nitrogen flow sub-model and a condensing pipe sub-model. The sub-models were coupled through the heat and mass transfer process between the gas, frost and liquid nitrogen. The system working parameters during the steady and the pulsed tests of a bipropellant nitrogen-tetroxide/mono-methylhydrazine attitude-control engine were calculated, and effects of the important system design parameters on working performance were explored. The results show that the current test system could provide environment for the engine pulse tests and 6×104 s steady tests with a maximum propellant flow rate of 6.4 g/s (trust is about 16.5 N); in long-term test, the frost on the surface of condensing pipes will get saturated and lose the ability to absorb carbon dioxide and water vapor, leading to the gradually increase of the vacuum tank pressure; during the engine pulsed test, the vacuum tank pressure will fluctuate with the pulses, up to about 70% in the 15 ms pulse case. The conclusion of the study could be a guide in the design and upgrade of the high-altitude test system for the liquid attitude-control engines.

     

  • loading
  • [1]
    郭霄峰.液体火箭发动机试验[M].北京:中国宇航出版社, 2005:319-320.

    GUO X F.Liquid rocket engine test[M].Beijing:China Astronautic Publishing House, 2005:319-320(in Chinese).
    [2]
    李殿东.76 km高空环境模拟试验舱的研制[J].真空, 2002(5):41-45. http://www.cnki.com.cn/Article/CJFDTOTAL-ZKZK200205011.htm

    LI D D.Design of 76 km high-altitude space simulation test module[J].Vacuum, 2002(5):41-45(in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-ZKZK200205011.htm
    [3]
    凌桂龙, 蔡国飙, 张建华.基于真空羽流试验的洁净真空系统设计[J].航空动力学报, 2013, 28(5):1173-1179. http://www.cnki.com.cn/Article/CJFDTOTAL-HKDI201305028.htm

    LING G L, CAI G B, ZHANG J H.Oil-free vacuum system design based on vacuum plume experiment[J].Journal of Aerospace Power, 2013, 28(5):1173-1179(in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-HKDI201305028.htm
    [4]
    ROBERT C F, ARTHUR D H, THOMAS A K.Space environment facility for electric propulsion systems research:NASA TN D-2774[R].Washington, D.C.:NASA, 1965.
    [5]
    JOHN M S, JOHN A H, THOMAS W H.Performance evaluation of the Russian SPT-100 Thruster at NASA LeRC:NASA-TM-106401[R].Washington, D.C.:NASA, 1993.
    [6]
    JAMES E.A mission profile life test facility[C]//Proceeding of 13th International Electric Propulsion Conference.Reston:AIAA, 1978:1-9.
    [7]
    韩战秀, 李艳霞, 王海峰.模拟空间环境试验真空获得技术研究[J].航天器环境工程, 2009, 26(增刊):38-40. http://www.cnki.com.cn/Article/CJFDTOTAL-HTHJ2009S1011.htm

    HAN Z X, LI Y X, WANG H F.Vacuum technology of space simulation test[J].Spacecraft Environment Engineering, 2009, 26(s1):38-40(in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-HTHJ2009S1011.htm
    [8]
    王文龙, 凌桂龙, 蔡国飙.大型容器单轴双铰链式大门机构设计与分析[J].北京航空航天大学学报, 2011, 37(4):399-404. http://bhxb.buaa.edu.cn/CN/abstract/abstract11932.shtml

    WANG W L, LING G L, CAI G B.Design and analysis of single-axis-double-pin hinged door for large-scale container[J].Journal of Beijing University of Aeronautics and Astronautics, 2011, 37(4):399-404(in Chinese). http://bhxb.buaa.edu.cn/CN/abstract/abstract11932.shtml
    [9]
    张莘艾, 汤海滨, 施陈波, 等.低功率N2H4电弧加热发动机高空模拟试验系统[J].北京航空航天大学学报, 2010, 36(8):977-995. http://bhxb.buaa.edu.cn/CN/abstract/abstract8425.shtml

    ZHANG X A, TANG H B, SHI C B, et al.High altitude simulation experiment system for low power hydrazine arcjet[J].Journal of Beijing University of Aeronautics and Astronautics, 2010, 36(8):977-995(in Chinese). http://bhxb.buaa.edu.cn/CN/abstract/abstract8425.shtml
    [10]
    庞贺伟, 孟宪红, 张行.热沉结构管接头的应力计算与实验验证[J].北京航空航天大学学报, 2009, 35(1):70-73. http://bhxb.buaa.edu.cn/CN/abstract/abstract8848.shtml

    PANG H W, MENG X H, ZHANG X.Numerical calculation and experimental verification of stress at joint between two pipes of thermal shrouds[J].Journal of Beijing University of Aeronautics and Astronautics, 2009, 35(1):70-73(in Chinese). http://bhxb.buaa.edu.cn/CN/abstract/abstract8848.shtml
    [11]
    姜传胜, 王浚.大型空间环模器热沉设计研究[J].北京航空航天大学学报, 2001, 27(3):305-308. http://bhxb.buaa.edu.cn/CN/abstract/abstract11033.shtml

    JIANG C S, WANG J.Quantitative thermal design of heat sinks in large space simulations[J].Journal of Beijing University of Aeronautics and Astronautics, 2001, 27(3):305-308(in Chinese). http://bhxb.buaa.edu.cn/CN/abstract/abstract11033.shtml
    [12]
    王文龙, 周建平, 蔡国飙.内置式深冷泵抽速计算及数值模拟研究[J].真空科学与技术学报, 2012, 32(5):442-446. http://www.cnki.com.cn/Article/CJFDTOTAL-ZKKX201205018.htm

    WANG W L, ZHOU J P, CAI G B.Direct simulation Monte Carlo study of pumping speed of internalcryogenic fins[J].Chinese Journal of Vacuum Science and Technology, 2012, 32(5):442-446(in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-ZKKX201205018.htm
    [13]
    李兆慈, 徐烈.高空模拟试验舱中燃气流动过程的分析与计算[J].推进技术, 2000, 21(5):16-18. http://www.cnki.com.cn/Article/CJFDTOTAL-TJJS200005004.htm

    LI Z C, XU L.Analysis and calculation for process of exhaust gas flowing in the outer space simulator[J].Journal of Propulsion Technology, 2000, 21(5):16-18(in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-TJJS200005004.htm
    [14]
    张育林, 刘昆.液体火箭发动机动力学理论与应用[M].北京:科学出版社, 2005:113-115.

    ZHANG Y L, LIU K.Theory and application of liquid rocket engine dynamics[M].Beijing:Science Press, 2005:113-115(in Chinese).
    [15]
    达道安.真空设计手册[M].北京:国防工业出版社, 2004:416-417.

    DA D A.Vaccum design manul[M].Beijing:National Defence Industry Press, 2004:416-417(in Chinese).
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(13)  / Tables(2)

    Article Metrics

    Article views(767) PDF downloads(567) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return