Oxidising paste was prepared for in-situ local oxidation treatment of coatings on aluminum alloy skin surface and its film-forming performance on 2024-T3 aluminum alloy was studied. Morphology and chemical composition, corrosion resistance, and adhesive performance of the oxidation film were investigated by SEM, EDS, stereomicroscope, drop test, electrochemistry test, contact angle and tension loading method. The results show that oxidation film can be obtained rapidly on aluminum alloy surface after treated by oxidising paste, and the film has microscopic pore structure, including Al, F, Cr, O, etc. Corrosion resistance of the film is similar to that gained by Alodine solution. Compared to the bare sample, corrosion potential increases from -0.898 V to -0.880 V, corrosion current density decreases from 2.582×10-5 A/cm2 to 3.334×10-7 A/cm2, and impedance improves from 1.556×103 Ω/cm2 to 1.347×105 Ω/cm2. Surface free energy and the work of adhesion rise from 32.7 mJ/cm2 and 36.3 mJ to 55.7 mJ/cm2 and 109.7 mJ, respectively. Strength properties of adhesive in shear is promoted from 11.7 MPa to 15.0 MPa. The results indicate that morphology and chemical composition of the oxidation film can enhance interface bonding strength and adhesive performance.