Hu Zhendong, Huang Hai, Jia Guanghuiet al. Identification method for the material parameters of Al alloy under the condition of hypervelocity impact[J]. Journal of Beijing University of Aeronautics and Astronautics, 2008, 34(09): 999-1002. (in Chinese)
Citation: WANG Longfang, HE Weiliang, WANG Shichaoet al. Effects of canopy's air permeability on parafoil aerodynamic performance[J]. Journal of Beijing University of Aeronautics and Astronautics, 2017, 43(10): 2021-2029. doi: 10.13700/j.bh.1001-5965.2016.0764(in Chinese)

Effects of canopy's air permeability on parafoil aerodynamic performance

doi: 10.13700/j.bh.1001-5965.2016.0764
More Information
  • Corresponding author: HE Weiliang, E-mail:heweiliang@buaa.edu.cn
  • Received Date: 28 Sep 2016
  • Accepted Date: 30 Dec 2016
  • Publish Date: 20 Oct 2017
  • In order to enhance the flight performance of parafoil, the effects of canopy fabric's air permeability on parafoil aerodynamic performance were studied. The canopy external flow field was modeled by the incompressible Reynolds-averaged Navier-Stokes (RANS) equations, and the governing equations for porous medium domain with an additional momentum source term were established to model the canopy. For two material models with air permeability and one traditional model without air permeability, the aerodynamic characteristics and distribution of the two-dimensional and three-dimensional flow field were numerically simulated under steady condition. The results indicate that the canopy seepage velocity is available by solving the governing equations of porous medium domain, and the canopy external turbulivity increases sharply. The lift coefficient decreases and drag coefficient increases significantly when the canopy is made of large air permeability fabric, and furthermore the inner cavity pressure dropping affects the aerodynamic shape maintaining of parafoil. The lift coefficient is less than that in impermeable case at small angle of attack, and is greater than that in impermeable case at large angle of attack when the canopy is made of slight air permeability fabric because mild seepage velocity can delay the boundary layer separation at large angle of attack.

     

  • [1]
    LINGARD J.The aerodynamics of gliding parachutes:A88-11201[R].London:RAS, 1986.
    [2]
    JANN T.Aerodynamic coefficients for a parafoil wing with arc anhedral-theoretical and experimental results:AIAA-2003-2106[R].Reston:AIAA, 2003.
    [3]
    张顺玉, 秦子增, 张晓今.可控翼伞气动力及雀降操纵力仿真计算[J].国防科技大学学报, 1999, 21(3):21-24. http://www.cnki.com.cn/Article/CJFDTOTAL-GFKJ903.005.htm

    ZHANG S Y, QIN Z Z, ZHANG X J.The calculation of aerodynamics and flare control force for controlled parafoil[J].Journal of National University of Defense Technology, 1999, 21(3):21-24(in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-GFKJ903.005.htm
    [4]
    MATOS C, MAHALINGAM R, OTTINGER G, et al.Wind tunnel measurements of parafoil geometry and aerodynamics[C]//36th AIAA Aerospace Sciences Meeting.Reston:AIAA, 1998:1-11.
    [5]
    贺卫亮.利用风洞试验研究冲压翼伞的升阻特性[J].航空学报, 1999, 20(增刊):75-77. http://www.cnki.com.cn/Article/CJFDTOTAL-HKXB9S1.027.htm

    HE W L.Study on lift-drag characteristic of ram air parachute in wind tunnel[J].Acta Aeronautica et Astronautica Sinica, 1999, 20(Sup.):75-77(in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-HKXB9S1.027.htm
    [6]
    战培国. 翼型伞风洞测力技术及工程估算方法研究[D]. 成都: 四川大学, 2004.

    ZHAN P G.The wind tunnel test technique and aerodynamic characteristics evaluation research on ram air parawings[D].Chengdu:Sichuan University, 2004(in Chinese).
    [7]
    BALAJI R, MITTAL S, RAI A K.Effect of leading edge cut on the aerodynamics of ram-air parachutes[J].International Journal for Numerical Methods in Fluids, 2005, 47(1):1-17. doi: 10.1002/(ISSN)1097-0363
    [8]
    李健.前缘切口对冲压式翼伞的气动力影响[J].航天返回与遥感, 2005, 26(1):36-41. http://www.cnki.com.cn/Article/CJFDTOTAL-HFYG200501008.htm

    LI J.The aerodynamic influence of the cutter of the front edge of parafoil[J].Spacecraft Recovery & Remote Sensing, 2005, 26(1):36-41(in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-HFYG200501008.htm
    [9]
    李扬. 冲压式翼伞后缘下拉气动特性的数值研究[D]. 长沙: 国防科技大学, 2004.

    LI Y.Numerical simulation of ram-air parachutes with flap deflection[D].Changsha:National University of Defense Technology, 2004(in Chinese).
    [10]
    MOHAMMADI M A, JOHARI H.Computation of flow over a high-performance parafoil canopy[J].Journal of Aircraft, 2010, 47(4):1338-1345. doi: 10.2514/1.47363
    [11]
    朱旭, 曹义华.翼伞平面形状对翼伞气动性能的影响[J].航空学报, 2011, 32(11):1998-2007.

    ZHU X, CAO Y H.Numerical simulation of platform geometry effect on parafoil aerodynamic performance[J].Acta Aeronauticaet Astronautica Sinica, 2011, 32(11):1998-2007(in Chinese).
    [12]
    CAO Y H, ZHU X.Effects of characteristic geometric parameters on parafoil lift and drag[J].Aircraft Engineering and Aerospace Technology, 2013, 85(4):280-292. doi: 10.1108/AEAT-Jun-2011-0096
    [13]
    朱旭, 曹义华.翼伞弧面下反角、翼型和前缘切口对翼伞气动性能的影响[J].航空学报, 2012, 33(7):1189-1200. http://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201207005.htm

    ZHU X, CAO Y H.Effects of arc-anhedral angle, airfoil and leading edge cut on parafoil aerodynamic performance[J].Acta Aeronautica et Astronautica Sinica, 2012, 33(7):1189-1200(in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201207005.htm
    [14]
    张春, 杨倩, 袁蒙, 等.冲压翼伞流场与气动操纵特性的数值模拟[J].航空动力学报, 2013, 28(9):2037-2043. http://www.cnki.com.cn/Article/CJFDTOTAL-HKDI201309020.htm

    ZHANG C, YANG Q, YUAN M, et al.Numerical simulation of flow field and hangding aerodynamic characteristics of ram-air parachute[J].Journal of Aerospace Power, 2013, 28(9):2037-2043(in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-HKDI201309020.htm
    [15]
    KALRO V, TEZDUYAR T.A parallel 3D computational method for fluid-structure interactions in parachute systems[J].Computer Methods in Applied Mechanics and Engineering, 2000, 190(3-4):321-332. doi: 10.1016/S0045-7825(00)00204-8
    [16]
    汪龙芳, 贺卫亮.基于索膜有限元模型的翼伞气动变形仿真[J].北京航空航天大学学报, 2017, 43(1):47-52.

    WANG L F, HE W L.Parafoil aerodynamic deformation simulation based on cable-membrane finite element model[J].Journal of Beijing University of Aeronautics and Astronautics, 2017, 43(1):47-52(in Chinese).
    [17]
    李万平.计算流体力学[M].武汉:华中科技大学出版社, 2004.

    LI W P.Computational fluid mechanics[M].Wuhan:Huazhong University of Science and Technology Press, 2004(in Chinese).
    [18]
    王利荣.降落伞理论与应用[M].北京:宇航出版社, 1997.

    WANG L R.The theory and application of parachutes[M].Beijing:China Astronautic Publishing House, 1997(in Chinese).
    [19]
    HAN Y H, WANG Y W, YANG C X.Numerical methods for analyzing the aerodynamic characteristics of cross parachute with permeability[C]//Aerodynamic Decelerator Systems Technology Conference.Reston:AIAA, 2013:1-14.
    [20]
    马衍富.降落伞织物的透气性[J].产业用纺织品, 1987, 5(1):26-30. http://www.cnki.com.cn/Article/CJFDTOTAL-CYYF198701003.htm

    MA Y F.Permeability of parachute fabic[J].Industrial Fabric, 1987, 5(1):26-30(in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-CYYF198701003.htm
    [21]
    DESABRAIS K J, BERGERON K, NYREN D, et al.Aerodynamic investigations of a ram-air parachute canopy and an airdrop system[C]//23rd AIAA Aerodynamic Decelerator Systems Technology Conferences.Reston:AIAA, 2015:1-17.
    [22]
    杨雪, 余莉, 李允伟, 等.环帆伞稳降阶段织物透气性影响数值模拟[J].空气动力学学报, 2015, 33(5):714-719. http://www.cnki.com.cn/Article/CJFDTOTAL-KQDX201505021.htm

    YANG X, YU L, LI Y W, et al.Numerical simulation of the effect of the permeability on the ringsail parachute in terminal descent stage[J].Acta Aerodynamic Sinica, 2015, 33(5):714-719(in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-KQDX201505021.htm
  • Relative Articles

    [1]YAO Jieke, YU Zhanggui, WANG Chenying. Analysis for yawing aerodynamic characteristics of medium to low aspect ratio blended-wing-body configuration and the study on optimization for aerodynamic stability enhancement[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2024.0893
    [2]ZHANG F X,GAO T,WU H D. Improved chimpanzee search algorithm based on multi-strategy fusion and its application[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(1):235-247 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0891.
    [3]YE Yi-qiao, SHEN Hai-dong, LIU Yan-bin, GAO Ze-peng, KONG Xiang, CHEN Jin-bao. Integrated design of hypersonic aircraft wing layout and mission trajectory[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2023.0650
    [4]JIANG Y F,XU X Z,XU F Q,et al. Multi-strategy fusion improved adaptive mayfly algorithm[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(4):1416-1426 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0492.
    [5]YU Ming-yang, LI Ting, XU Jing. Enhanced Dwarf Mongoose Optimization Algorithm with Multi-Strategy fusion[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2023-0613
    [6]WANG Y T,LAN Q S,ZHOU Z,et al. Design and aerodynamic analysis of blended wing body with variable camber technology[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(4):1292-1307 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0493.
    [7]WANG Yan, HUANG Binghao. Pose graph optimization algorithm based on nonlinear factor recovery[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2024.0363
    [8]LI Dan, CUI Wen-feng, CHEN Gui-peng. ptimal dynamic response exploration for SIMO Buck converter based on differential evolution algorithm[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2023.0356
    [9]ZHU C C,TANG Z L,ZHAO X,et al. Multi-objective hybrid algorithm based on gradient search and evolution mechanism[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(6):1940-1951 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0544.
    [10]SUN Bo, ZHANG Wenpeng, WU Zexuan, SU Yebo, WEI Ming. Three-dimensional path planning of UAV based on multi-strategy golf optimization algorithm[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2024.0429
    [11]YANG X X,JIANG Z J,ZHANG Y,et al. Distributed cooperative guidance strategy based on virtual negotiation and rolling horizon optimization[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(1):61-76 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0174.
    [12]YUAN Y,LIU J,YU J Q,et al. Aerodynamic layout optimization design of high-speed folding-wing vehicles[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(11):3410-3416 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0849.
    [13]HE J W,XU X Z,GAO B. Improved moth-flame optimization algorithm with multi-strategy integration[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(9):2862-2871 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0707.
    [14]WANG Y L,FENG S,BU C,et al. Stability characteristics of hybrid wing-body aircraft based on virtual flight[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(9):2337-2344 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0684.
    [15]XIAO T H,XU Y N,ZHU Z H,et al. Effect of engine nacelle layout on sonic boom of supersonic transport[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(9):2267-2278 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0687.
    [16]WANG Y W,LEI R W,WANG H. Structural topology optimization of flying wing aircraft[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(2):482-490 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0262.
    [17]FU J W,WANG C. Configuration and multibody separation scheme of compact missile swarm[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(7):1630-1638 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0508.
    [18]GUO Qing, HUANG Qi-lian, CHEN Jin-liang. Performance Degradation Modeling of Civil Aviation Engine Based on Component Characteristic Map Optimization[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2023.0341
    [19]ZHAO Zhen-wu, XING Xiao-xiao, GENG Shuo. Research on Resilience Measurement and Optimization Strategy of Air Cargo Secure Supply Chain[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2023.0499
    [20]FAN B X,CHEN G M,CAO Y Q. Multi-objective optimization of aerodynamic layout for hypersonic reentry vehicle[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(7):1639-1650 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0566.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(14)  / Tables(1)

    Article Metrics

    Article views(1079) PDF downloads(447) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return