Volume 43 Issue 10
Oct.  2017
Turn off MathJax
Article Contents
LIU Jiajia, ZHENG Mengzong, PAN Tianyu, et al. Numerical study on intermittent flapping flight performance of dragonfly during climbing[J]. Journal of Beijing University of Aeronautics and Astronautics, 2017, 43(10): 2118-2126. doi: 10.13700/j.bh.1001-5965.2016.0766(in Chinese)
Citation: LIU Jiajia, ZHENG Mengzong, PAN Tianyu, et al. Numerical study on intermittent flapping flight performance of dragonfly during climbing[J]. Journal of Beijing University of Aeronautics and Astronautics, 2017, 43(10): 2118-2126. doi: 10.13700/j.bh.1001-5965.2016.0766(in Chinese)

Numerical study on intermittent flapping flight performance of dragonfly during climbing

doi: 10.13700/j.bh.1001-5965.2016.0766
Funds:

Innovation and Practice Fund for Graduate Student of Beihang YCSJ-01-2016-06

More Information
  • Corresponding author: PAN Tianyu, E-mail: pantianyu@buaa.edu.cn
  • Received Date: 29 Sep 2016
  • Accepted Date: 16 Dec 2016
  • Publish Date: 20 Oct 2017
  • Aerodynamic force generation in a dragonfly intermittent flapping flight with modeled wings was studied using the method of numerical simulation. The computational results show that the average lift coefficient and average thrust coefficient of the modeled wing decrease with the increase of the intermittent proportion at the Reynolds number of 157. They descend faster in the frontal part, while gently in the middle part, and decrease to zero in the latter part. The average thrust coefficient is affected greater than the average lift coefficient. When the continuous flight turns into intermittent flight, the thrust coefficient during the early phase and stable phase of short gliding is significantly weakened with totally 42.7%; For the lift coefficient, it is mainly weakened during the stable phase of short gliding, accounting for 41.4%, but the early phase of short gliding has a contribution of 8% to the increase of average lift coefficient. Intermittent flapping flight is possible to improve the lift-thrust ratio in dragonfly flight. When the the proportion of gliding time to intermittent flight cycle is 0.3, the average lift-thrust ratio is close to 1.

     

  • loading
  • [1]
    SUN M.Insect flight dynamics:Stability and control[J].Reviews of Modern Physics, 2014, 86(2):615-646. doi: 10.1103/RevModPhys.86.615
    [2]
    WEIS-FOGH T.Quick estimates of flight fitness in hovering an-imals, including novelmechanism for lift production[J].Journal of Experimental Biology, 1973, 59(1):169-230.
    [3]
    ELLINGTON C P, VAN DEN BERG C, WILLMOTT A P.Leading edge vortices in insect flight[J].Nature, 1996, 384(6610):626-630. doi: 10.1038/384626a0
    [4]
    DICKINSON M H, LEHMANN F O, SANE S P.Wing rotation and the aerodynamic basis of insect flight[J].Science, 1999, 284(5422):1954-1960. doi: 10.1126/science.284.5422.1954
    [5]
    SUN M, TANG J.Unsteady aerodynamic force generation by a model fruit flywing in flappingmotion[J].Journal of Experimental Biology, 2002, 205(1):55-70. http://www.ncbi.nlm.nih.gov/pubmed/11818412
    [6]
    AZUMA A, WATANABE T.Flight performance of a dragonfly[J].Journal of Experimental Biology, 1988, 137(1):221-252.
    [7]
    WAKELING J M, ELLINGTON C P.Dragonfly flight.Ⅱ.Velocities, accelerations and kinematics of flapping flight[J].Journal of Experimental Biology, 1997, 200(3):557-582. https://www.ncbi.nlm.nih.gov/pubmed/9318255
    [8]
    WAKELING J M, ELLINGTON C P.Dragonfly flight.I.Gliding flight and steady-state aerodynamic forces[J].Journal of Experimental Biology, 1997, 200(3):543-556. http://www.ncbi.nlm.nih.gov/pubmed/9318238
    [9]
    WAKELING J, ELLINGTON C.Dragonfly flight.Ⅲ.Lift and power requirements[J].Journal of Experimental Biology, 1997, 200(3):583-600. https://www.mendeley.com/research-papers/dragonfly-3-lift-power-requirements/
    [10]
    WANG Z J, RUSSELL D.Effect of forewing and hindwing interactions on aerodynamic forces and power in hovering dragonfly flight[J].Physical Review Letters, 2007, 99(14):12243-12254. https://www.ncbi.nlm.nih.gov/pubmed/17930724
    [11]
    DONG H, KOEHLER C, LIANG Z, et al.An integrated analysis of a dragonfly in free flight:AIAA-2010-4390[R].Reston:AIAA, 2010.
    [12]
    高倩, 郑孟宗, 李志平, 等.蜻蜓爬升过程飞行特征实验研究[J].北京航空航天大学学报, 2016, 42(6):1271-1278. http://bhxb.buaa.edu.cn/CN/abstract/abstract13982.shtml

    GAO Q, ZHENG M Z, LI Z P, et al.Experimental study on flight performance of dragonfly during climbing[J].Journal of Beijing University of Aeronautics and Astronsutics, 2016, 42(6):1271-1278(in Chinese). http://bhxb.buaa.edu.cn/CN/abstract/abstract13982.shtml
    [13]
    FADLUN E A, VERZICCO R, ORLANDI P, et al.Combined immersed-boundary finite-difference methods for three-dimensional complex flow simulations[J].Journal of Computational Physics, 2000, 161(1):35-60. doi: 10.1006/jcph.2000.6484
    [14]
    MOHD-YUSOF J.Combined immersed-boundary/B-spline methods for simulations of flow in complex geometries[C]//Annual Research Briefs, 1997:317-327.
    [15]
    GRESHO P M, CHAN S T, LEE R L, et al.A modified finite element method for solving the time-dependent, incompressible Navier-Stokes equations.Part 2:Applications[J].International Journal for Numerical Methods in Fluids, 1984, 4(7):619-640. doi: 10.1002/(ISSN)1097-0363
    [16]
    SAIKI E M, BIRINGEN S.Numerical simulation of a cylinder in uniform flow:Application of a virtual boundary method[J].Journal of Computational Physics, 1996, 123(2):450-465. doi: 10.1006/jcph.1996.0036
    [17]
    COUTANCEAU M, BOUARD R.Experimental determination of the main features of the viscous flow in the wake of a circular cylinder in uniform translation.Part 2.Unsteady flow[J].Journal of Fluid Mechanics, 1977, 79(2):257-272. doi: 10.1017/S0022112077000147
    [18]
    SILVA L E, SILVEIRA-NETO A, DAMASCENO J J R.Numerical simulation of two-dimensional flows over a circular cylinder using the immersed boundary method[J].Journal of Computational Physics, 2003, 189(2):351-370. doi: 10.1016/S0021-9991(03)00214-6
    [19]
    PARK J, KWON K, CHOI H.Numerical solutions of flow past a circular cylinder at Reynolds numbers up to 160[J].KSME International Journal, 1998, 12(6):1200-1205. doi: 10.1007/BF02942594
    [20]
    WIESELSBERGER C.New data on the laws of fluid resistance[J].Physikalische Zeitschrift, 1921, 22:321-328.
    [21]
    RELF E F.An electrical method for tracing stream lines in the two-dimensional motion of a perfect fluid[J].Philosophical Magazine, 1924, 29(285):535-539.
    [22]
    JANE W Z.Two dimensional mechanism for insect hovering[J].Physical Review Letters, 2000, 85(10):2216-2219. doi: 10.1103/PhysRevLett.85.2216
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(13)  / Tables(1)

    Article Metrics

    Article views(827) PDF downloads(299) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return