Volume 43 Issue 10
Oct.  2017
Turn off MathJax
Article Contents
ZHANG Shen, WANG Qing, DONG Chaoyang, et al. Reduced step control of hypersonic vehicle based on tracking differentiator[J]. Journal of Beijing University of Aeronautics and Astronautics, 2017, 43(10): 2054-2062. doi: 10.13700/j.bh.1001-5965.2016.0791(in Chinese)
Citation: ZHANG Shen, WANG Qing, DONG Chaoyang, et al. Reduced step control of hypersonic vehicle based on tracking differentiator[J]. Journal of Beijing University of Aeronautics and Astronautics, 2017, 43(10): 2054-2062. doi: 10.13700/j.bh.1001-5965.2016.0791(in Chinese)

Reduced step control of hypersonic vehicle based on tracking differentiator

doi: 10.13700/j.bh.1001-5965.2016.0791
Funds:

National Natural Science Foundation of China 61374012

National Natural Science Foundation of China 61403028

More Information
  • Corresponding author: WANG Qing, E-mail:wangqing@buaa.edu.cn
  • Received Date: 11 Oct 2016
  • Accepted Date: 06 Jan 2017
  • Publish Date: 20 Oct 2017
  • Aimed at the strong nonlinearity, complicated couplings and high uncertainties of hypersonic vehicle, a reduced step control scheme based on high-order tracking differentiator is put forward. The longitudinal model of hypersonic vehicle is transformed as strict-feedback form. A tracking differentiator is imported in the backstepping frame. The derivative of virtual control signal in the first step is obtained using the tracking differentiator with its ability of estimating any derivative for a given signal. Also, the actual control signal in the second step is obtained according to the second-order derivative estimation of the tracking differentiator. Thus, the three design steps are reduced into two steps. Moreover, the parameter uncertainties and external disturbances are modeled as equivalent disturbances in each step. Extended state observers are designed to estimate the equivalent disturbances. Then, the equivalent disturbances are compensated in the controller. The Lyapunov theory is used to prove the stability of the closed-loop system. The numerical simulation results show the inhibiting ability of the proposed control scheme against uncertainties and disturbances. And its tracking precision is superior to that of the traditional dynamic surface control method.

     

  • loading
  • [1]
    RODRIGUEZ A A, DICKESON J J, CIFDALOZ O, et al. Modeling and control of scramjet-powered hypersonic vehicles:Challenges, trends, & tradeoffs:AIAA-2008-6793[R].Reston:AIAA, 2008.
    [2]
    LAMORTE N, FRIEDMANN P P, DALLE D J, et al.Uncertainty propagation in integrated airframe-propulsion system analysis for hypersonic vehicle[J].Journal of Propulsion and Power, 2015, 31(1):54-68. doi: 10.2514/1.B35122
    [3]
    DICKESON J J, RODRIGUEZ A A, SRIDHARAN S, et al.Control-relevant modeling, analysis, and design for scramjet-powered hypersonic vehicle:AIAA-2009-7287[R].Reston:AIAA, 2009.
    [4]
    KARLGARD C D, MARTIN J G, TARTABINI P V, et al.Hyper-X Mach 10 trajectory reconstruction:AIAA-2005-5920[R].Reston:AIAA, 2005.
    [5]
    MORELLI E A.Flight test experiment design for characterizing stability and control of hypersonic vehicles[J].Journal of Guidance, Control, and Dynamics, 2009, 32(3):949-959. doi: 10.2514/1.37092
    [6]
    孙长银, 穆朝絮, 余瑶.近空间高超声速飞行器控制的几个科学问题研究[J].自动化学报, 2013, 39(11):1901-1913. http://youxian.cnki.com.cn/yxdetail.aspx?filename=HEBG20170428010&dbname=CAPJ2015

    SUN C Y, MU Z X, YU Y.Some control problem for near space hypersonic vehicles[J].Acta Automatica Sinica, 2013, 39(11):1901-1913(in Chinese). http://youxian.cnki.com.cn/yxdetail.aspx?filename=HEBG20170428010&dbname=CAPJ2015
    [7]
    WANG Q, STENGEL R F.Robust nonlinear control of a hypersonic aircraft[J].Journal of Guidance, Control, and Dynamics, 2000, 23(4):577-585. doi: 10.2514/2.4580
    [8]
    FIORENTINI L, SERRANI A, BOLENDER M A, et al.Nonlinear robust adaptive control of flexible air-breathing hypersonic vehicles[J].Journal of Guidance, Control, and Dynamics, 2009, 32(2):401-416. doi: 10.1007%2Fs11771-014-1924-5.pdf
    [9]
    SUN H B, LI S H, SUN C Y.Finite time integral sliding model control of hypersonic vehicles[J].Nonlinear Dynamics, 2013, 73(1/2):229-244. doi: 10.1007%2Fs11071-013-0780-4.pdf
    [10]
    刘燕斌, 陆宇平.基于反步法的高超音速飞机纵向逆飞行控制[J].控制与决策, 2007, 22(3):313-317. http://www.cnki.com.cn/Article/CJFDTOTAL-KZYC200703014.htm

    LIU Y B, LU Y P.Longitudinal inversion flight control based on backstepping for hypersonic vehicle[J].Control and Decision, 2007, 22(3):313-317(in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-KZYC200703014.htm
    [11]
    黄喜元, 王青, 董朝阳.基于Backstepping的高超声速飞行器鲁棒自适应控制[J].系统工程与电子技术, 2011, 33(6):1321-1326. http://youxian.cnki.com.cn/yxdetail.aspx?filename=HEBG20170428010&dbname=CAPJ2015

    HUANG X Y, WANG Q, DONG C Y.Robust adaptive control of hypersonic vehicles via Backstepping method[J].Systems Engineering and Electronics, 2011, 33(6):1321-1326(in Chinese). http://youxian.cnki.com.cn/yxdetail.aspx?filename=HEBG20170428010&dbname=CAPJ2015
    [12]
    XU B, GAO D X, WANG S X.Adaptive neural control based on HGO for hypersonic flight vehicles[J].Science China Information Sciences, 2011, 54(3):511-520. doi: 10.1007/s11432-011-4189-8
    [13]
    XU B, FAN Y H, ZHANG S M.Minimal-learning-parameter technique based adaptive neural control of hypersonic flight dynamics without back-stepping[J].Neurocomputing, 2015, 164(C):201-209. doi: 10.1007/s11071-016-2637-0
    [14]
    SWAROOP D, HEDRICK J K, YIP P P, et al.Dynamic surface control for a class of nonlinear systems[J].IEEE Transactions on Automatic Control, 2000, 45(10):1893-1899. doi: 10.1109/TAC.2000.880994
    [15]
    XU B, HUANG X Y, WANG D W, et al.Dynamic surface control of constrained hypersonic flight models with parameter estimation and actuator compensation[J].Asian Journal of Control, 2014, 16(1):162-174. doi: 10.1002/asjc.2014.16.issue-1
    [16]
    WASEEM A B, LIN Y, KENDRICK A S.Adaptive integral dynamic surface control of a hypersonic flight vehicle[J].International Journal of Systems Science, 2015, 46(10):1717-1728. doi: 10.1080/00207721.2013.828798
    [17]
    韩京清, 王伟.非线性跟踪微分器[J].系统科学与数学, 1994, 14(2):177-183. http://cdmd.cnki.com.cn/Article/CDMD-10530-2004138834.htm

    HAN J Q, WANG W.Nonlinear tracking-differentiator[J].Journal of Systems Science and Mathematical Science, 1994, 14(2):177-183(in Chinese). http://cdmd.cnki.com.cn/Article/CDMD-10530-2004138834.htm
    [18]
    PARKER J T, SERRANI A, YURKOVICH S, et al.Control-oriented modeling of an air-breathing hypersonic vehicle[J].Journal of Guidance, Control, and Dynamics, 2007, 30(3):856-869. doi: 10.2514/1.27830
    [19]
    XU B, SHI Z K.An overview on flight dynamic and control approaches for hypersonic vehicles[J].Science China Information Sciences, 2015, 58(7):1-19. doi: 10.1007/s11431-016-0009-9
    [20]
    FIORENTINI L, SERRANI A.Adaptive restricted trajectory tracking for a non-minimum phase hypersonic vehicle model[J].Automatic, 2012, 48(7):1248-1261. doi: 10.1016/j.automatica.2012.04.006
    [21]
    GUO B Z, ZHAO Z L.On convergence of tracking differentiator[J].International Journal of Control, 2001, 84(4):693-701. http://www.docin.com/p-507789177.html
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)

    Article Metrics

    Article views(798) PDF downloads(483) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return