Guo Linhan, Kang Rui. Base operational unit corrective maintenance process modeling and simulation[J]. Journal of Beijing University of Aeronautics and Astronautics, 2007, 33(01): 27-31. (in Chinese)
Citation: ZHANG Shen, WANG Qing, DONG Chaoyang, et al. Reduced step control of hypersonic vehicle based on tracking differentiator[J]. Journal of Beijing University of Aeronautics and Astronautics, 2017, 43(10): 2054-2062. doi: 10.13700/j.bh.1001-5965.2016.0791(in Chinese)

Reduced step control of hypersonic vehicle based on tracking differentiator

doi: 10.13700/j.bh.1001-5965.2016.0791
Funds:

National Natural Science Foundation of China 61374012

National Natural Science Foundation of China 61403028

More Information
  • Corresponding author: WANG Qing, E-mail:wangqing@buaa.edu.cn
  • Received Date: 11 Oct 2016
  • Accepted Date: 06 Jan 2017
  • Publish Date: 20 Oct 2017
  • Aimed at the strong nonlinearity, complicated couplings and high uncertainties of hypersonic vehicle, a reduced step control scheme based on high-order tracking differentiator is put forward. The longitudinal model of hypersonic vehicle is transformed as strict-feedback form. A tracking differentiator is imported in the backstepping frame. The derivative of virtual control signal in the first step is obtained using the tracking differentiator with its ability of estimating any derivative for a given signal. Also, the actual control signal in the second step is obtained according to the second-order derivative estimation of the tracking differentiator. Thus, the three design steps are reduced into two steps. Moreover, the parameter uncertainties and external disturbances are modeled as equivalent disturbances in each step. Extended state observers are designed to estimate the equivalent disturbances. Then, the equivalent disturbances are compensated in the controller. The Lyapunov theory is used to prove the stability of the closed-loop system. The numerical simulation results show the inhibiting ability of the proposed control scheme against uncertainties and disturbances. And its tracking precision is superior to that of the traditional dynamic surface control method.

     

  • [1]
    RODRIGUEZ A A, DICKESON J J, CIFDALOZ O, et al. Modeling and control of scramjet-powered hypersonic vehicles:Challenges, trends, & tradeoffs:AIAA-2008-6793[R].Reston:AIAA, 2008.
    [2]
    LAMORTE N, FRIEDMANN P P, DALLE D J, et al.Uncertainty propagation in integrated airframe-propulsion system analysis for hypersonic vehicle[J].Journal of Propulsion and Power, 2015, 31(1):54-68. doi: 10.2514/1.B35122
    [3]
    DICKESON J J, RODRIGUEZ A A, SRIDHARAN S, et al.Control-relevant modeling, analysis, and design for scramjet-powered hypersonic vehicle:AIAA-2009-7287[R].Reston:AIAA, 2009.
    [4]
    KARLGARD C D, MARTIN J G, TARTABINI P V, et al.Hyper-X Mach 10 trajectory reconstruction:AIAA-2005-5920[R].Reston:AIAA, 2005.
    [5]
    MORELLI E A.Flight test experiment design for characterizing stability and control of hypersonic vehicles[J].Journal of Guidance, Control, and Dynamics, 2009, 32(3):949-959. doi: 10.2514/1.37092
    [6]
    孙长银, 穆朝絮, 余瑶.近空间高超声速飞行器控制的几个科学问题研究[J].自动化学报, 2013, 39(11):1901-1913.

    SUN C Y, MU Z X, YU Y.Some control problem for near space hypersonic vehicles[J].Acta Automatica Sinica, 2013, 39(11):1901-1913(in Chinese).
    [7]
    WANG Q, STENGEL R F.Robust nonlinear control of a hypersonic aircraft[J].Journal of Guidance, Control, and Dynamics, 2000, 23(4):577-585. doi: 10.2514/2.4580
    [8]
    FIORENTINI L, SERRANI A, BOLENDER M A, et al.Nonlinear robust adaptive control of flexible air-breathing hypersonic vehicles[J].Journal of Guidance, Control, and Dynamics, 2009, 32(2):401-416. doi: 10.1007%2Fs11771-014-1924-5.pdf
    [9]
    SUN H B, LI S H, SUN C Y.Finite time integral sliding model control of hypersonic vehicles[J].Nonlinear Dynamics, 2013, 73(1/2):229-244. doi: 10.1007%2Fs11071-013-0780-4.pdf
    [10]
    刘燕斌, 陆宇平.基于反步法的高超音速飞机纵向逆飞行控制[J].控制与决策, 2007, 22(3):313-317. http://www.cnki.com.cn/Article/CJFDTOTAL-KZYC200703014.htm

    LIU Y B, LU Y P.Longitudinal inversion flight control based on backstepping for hypersonic vehicle[J].Control and Decision, 2007, 22(3):313-317(in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-KZYC200703014.htm
    [11]
    黄喜元, 王青, 董朝阳.基于Backstepping的高超声速飞行器鲁棒自适应控制[J].系统工程与电子技术, 2011, 33(6):1321-1326.

    HUANG X Y, WANG Q, DONG C Y.Robust adaptive control of hypersonic vehicles via Backstepping method[J].Systems Engineering and Electronics, 2011, 33(6):1321-1326(in Chinese).
    [12]
    XU B, GAO D X, WANG S X.Adaptive neural control based on HGO for hypersonic flight vehicles[J].Science China Information Sciences, 2011, 54(3):511-520. doi: 10.1007/s11432-011-4189-8
    [13]
    XU B, FAN Y H, ZHANG S M.Minimal-learning-parameter technique based adaptive neural control of hypersonic flight dynamics without back-stepping[J].Neurocomputing, 2015, 164(C):201-209. doi: 10.1007/s11071-016-2637-0
    [14]
    SWAROOP D, HEDRICK J K, YIP P P, et al.Dynamic surface control for a class of nonlinear systems[J].IEEE Transactions on Automatic Control, 2000, 45(10):1893-1899. doi: 10.1109/TAC.2000.880994
    [15]
    XU B, HUANG X Y, WANG D W, et al.Dynamic surface control of constrained hypersonic flight models with parameter estimation and actuator compensation[J].Asian Journal of Control, 2014, 16(1):162-174. doi: 10.1002/asjc.2014.16.issue-1
    [16]
    WASEEM A B, LIN Y, KENDRICK A S.Adaptive integral dynamic surface control of a hypersonic flight vehicle[J].International Journal of Systems Science, 2015, 46(10):1717-1728. doi: 10.1080/00207721.2013.828798
    [17]
    韩京清, 王伟.非线性跟踪微分器[J].系统科学与数学, 1994, 14(2):177-183.

    HAN J Q, WANG W.Nonlinear tracking-differentiator[J].Journal of Systems Science and Mathematical Science, 1994, 14(2):177-183(in Chinese).
    [18]
    PARKER J T, SERRANI A, YURKOVICH S, et al.Control-oriented modeling of an air-breathing hypersonic vehicle[J].Journal of Guidance, Control, and Dynamics, 2007, 30(3):856-869. doi: 10.2514/1.27830
    [19]
    XU B, SHI Z K.An overview on flight dynamic and control approaches for hypersonic vehicles[J].Science China Information Sciences, 2015, 58(7):1-19. doi: 10.1007/s11431-016-0009-9
    [20]
    FIORENTINI L, SERRANI A.Adaptive restricted trajectory tracking for a non-minimum phase hypersonic vehicle model[J].Automatic, 2012, 48(7):1248-1261. doi: 10.1016/j.automatica.2012.04.006
    [21]
    GUO B Z, ZHAO Z L.On convergence of tracking differentiator[J].International Journal of Control, 2001, 84(4):693-701.
  • Relative Articles

    [1]WEI H,CAI G B,FAN Y H,et al. Online guidance for hypersonic vehicles in glide-reentry segment[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(1):183-192 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0965.
    [2]LEI Juan-mian, ZHU Pei-yu. Numerical Study on Lateral Jet Control Efficiency of Hypersonic Reentry Double-cone Vehicle[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2023.0714
    [3]ZHANG Q C,WANG L,XI J X,et al. Tracking control of unmanned aerial vehicle swarms with leader-following double formation[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(7):2331-2342 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0607.
    [4]DONG J C,GAO Q H,LIU Z H. Planar motion control of distributed-driven vehicles considering dynamic hysteresis[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(12):3842-3853 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0887.
    [5]CHEN Qing-yang, XIN Hong-bo, LU Ya-fei, WANG Peng, WANG Yu-jie, ZHENG Jun-fei. Ground Taxiing Lateral Deviation Correction Control for High Subsonic UAVs[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2023.0635
    [6]LIN Junting, CHEN Xinzhou. Sliding mode control of magnetic levitation ball systems based on high-gain disturbance observer[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2024.0518
    [7]YANG F,LIN M Y,HU Z M,et al. Prediction method of aero-heating of hypersonic vehicle bi-curvature leading edge based on machine learning[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(9):2826-2834 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0746.
    [8]GE Jian-hao, GUO Jie, WANG Hao-ning, ZHANG Bao-chao, WAN Yang-yang, TANG Sheng-jing. Adaptive model predictive control for hypersonic morphing gliding vehicle[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2024.0081
    [9]ZHAO J K,GUO H,XU J Q. High performance control method for galvanometer laser scanner system[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(10):3208-3218 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0790.
    [10]YANG B,LIU C F,YU H,et al. A method for analyzing angle measurement error of radar on hypersonic vehicle[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(12):3666-3676 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0879.
    [11]FU H Q,WU S F,LIU M L,et al. Disturbance-observer based adaptive control for space inertial sensor[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(10):2799-2806 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0734.
    [12]ZHENG J K,TANG S J,GUO J. Closed-loop cooperative terminal guidance law based on predictor-corrector for hypersonic gliding vehicles[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(11):3188-3196 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0043.
    [13]ZHAO J Y,HU J,YAO J Y,et al. EHA fault diagnosis and fault tolerant control based on adaptive neural network robust observer[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(5):1209-1221 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0416.
    [14]FAN B X,CHEN G M,CAO Y Q. Multi-objective optimization of aerodynamic layout for hypersonic reentry vehicle[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(7):1639-1650 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0566.
    [15]LIU S S,LUO L,HAN Q H,et al. Study on lateral-directional stability of a practical high lift-to-drag ratio hypersonic vehicle with momentum lift augmentation[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(11):3010-3021 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0035.
    [16]XIA L C,WANG S Y,ZHANG J,et al. Bi-bandwidth extended state observer based disturbance rejection control method and its application on UAV[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(5):1201-1208 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0411.
    [17]XU Lingliang, CHEN Guiming, LI Qiaoyang. Ultra-local model-free speed predictive control based on ESO for PMSM[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(11): 2204-2214. doi: 10.13700/j.bh.1001-5965.2021.0085
    [18]ZHANG Yuan, HUANG Wanwei, LU Kunfeng, BAI Wenyan, YU Jianglong. Modeling and finite-time control for hypersonic morphing flight vehicle[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(10): 1979-1993. doi: 10.13700/j.bh.1001-5965.2021.0701
    [19]YANG Yuchen, ZHANG Zenghui, YAN Jianing, ZHANG Jing, YANG Lingyu. Dual-channel control of hypersonic flight vehicles based on bounded perturbation analysis of eigenvalues[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(10): 2020-2030. doi: 10.13700/j.bh.1001-5965.2021.0053
    [20]PENG Weishi. Evaluation of high hitting accuracy performance of hypersonic vehicle[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(11): 2130-2137. doi: 10.13700/j.bh.1001-5965.2021.0094
  • Cited by

    Periodical cited type(5)

    1. 张远,黄万伟,田灿. 一种带有观测器的飞行器性能预设控制方法. 航天控制. 2022(03): 3-9 .
    2. 张远,黄旭,路坤锋,白文艳,黄万伟. 高超声速飞行器控制技术研究进展与展望. 宇航学报. 2022(07): 866-879 .
    3. 李继广,董彦非,杨芳,申洋. 基于反步控制方法的菱形翼无人机起飞滑跑控制. 北京航空航天大学学报. 2020(03): 496-504 . 本站查看
    4. 陈尔康,荆武兴,高长生. 弹性高速飞行器的状态/参数滚动时域估计. 北京航空航天大学学报. 2019(02): 291-298 . 本站查看
    5. 魏文军,赵雪童. 滑模动态面控制在快速反射镜系统中的应用. 应用光学. 2018(05): 714-721 .

    Other cited types(5)

  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)

    Article Metrics

    Article views(866) PDF downloads(483) Cited by(10)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return