Citation: | ZHANG Wei, XU Aiqiang, GAO Mingzheet al. Online condition prediction of avionic devices based on sparse kernel incremental extreme learning machine[J]. Journal of Beijing University of Aeronautics and Astronautics, 2017, 43(10): 2089-2098. doi: 10.13700/j.bh.1001-5965.2016.0802(in Chinese) |
In order to achieve the online condition prediction for avionic devices, a sparse kernel incremental extreme learning machine (ELM) algorithm is presented. For the problem of Gram matrix expansion in kernel online learning algorithms, a novel sparsification rule is presented by measuring the instantaneous learnable information contained on a data sample for dictionary selection. The proposed sparsification method combines the constructive strategy and the pruning strategy in two stages. By minimizing the redundancy of dictionary in the constructive phase and maximizing the instantaneous conditional self-information of dictionary atoms in the pruning phase, a compact dictionary with predefined size can be selected adaptively. For the kernel weight updating of kernel based incremental ELM, an improved decremental learning algorithm is proposed by using matrix elementary transformation and block matrix inversion formula, which effectively moderate the computational complexity at each iteration.In proposed algorithm, the inverse matrix of Gram matrix of the other samples can be directly updated after one sample is deleted from previous dictionary. The experimental results of the aero-engine condition prediction show that the proposed method can make the whole average error rate reduce to 2.18% when the prediction step is equal to 20. Compared with three well-known kernel ELM online learning algorithms, the prediction accuracy is improved by 0.72%, 0.14% and 0.13% respectively.
[1] |
TIAN Z, QIAN C, GU B, et al.Electric vehicle air conditioning system performance prediction based on artificial neural network[J].Applied Thermal Engineering, 2015, 89:101-104. doi: 10.1016/j.applthermaleng.2015.06.002
|
[2] |
孙伟超, 李文海, 李文峰.融合粗糙集与D-S证据理论的航空装备故障诊断[J].北京航空航天大学学报, 2015, 41(10):1902-1909.
SUN W C, LI W H, LI W F.Avionic devices fault diagnosis based on fusion method of rough set and D-S theory[J].Journal of Beijing University of Aeronautics and Astronautics, 2015, 41(10):1902-1909(in Chinese).
|
[3] |
YE F M, ZHANG Z B, CHAKRABARTY K, et al.Board-level functional fault diagnosis using multikernel support vector machines and incremental learning[J].IEEE Transactions on Computer-aided Design of Integrated Circuits and Systems, 2014, 33(2):279-290. doi: 10.1109/TCAD.2013.2287184
|
[4] |
JIE Y.A nonlinear kernel Gaussian mixture model based inferential monitoring approach for fault detection and diagnosis of chemical processes[J].Chemical Engineering Science, 2012, 68(1):506-519. doi: 10.1016/j.ces.2011.10.011
|
[5] |
ZHAO X Q, XUE Y F, WANG T.Fault detection of batch process based on multi-way kernel T-PLS[J].Journal of Chemical and Pharmaceutical Research, 2014, 6(7):338-346.
|
[6] |
HUANG G B, ZHOU H, DING X, et al.Extreme learning machine for regression and multiclass classification[J].IEEE Transactions on Systems, Man and Cybernetics-Part B:Cybernetics, 2011, 42(2):513-529.
|
[7] |
HUANG G B, ZHU Q Y, SIEW C K.Extreme learning machine:Theory and application[J].Neurocomputing, 2006, 70(1-3):489-501. doi: 10.1016/j.neucom.2005.12.126
|
[8] |
GUO L, HAO J H, LIU M.An incremental extreme learning machine for online sequential learning problems[J].Neurocomputing, 2014, 128:50-58. doi: 10.1016/j.neucom.2013.03.055
|
[9] |
ZHAO S L, CHEN B D, ZHU P P, et al.Fixed budget quantized kernel least-mean-square algorithm[J].Signal Processing, 2013, 93(9):2759-2770. doi: 10.1016/j.sigpro.2013.02.012
|
[10] |
RICHARD C, BERMUDEZ M, HONEINE P.Online prediction of time series data with kernels[J].IEEE Transactions on Signal Processing, 2009, 57(3):1058-1067. doi: 10.1109/TSP.2008.2009895
|
[11] |
GAO W, CHEN J, RICHARD C, et al.Online dictionary learning for kernel LMS[J].IEEE Transactions on Signal Processing, 2014, 62(11):2765-2777. doi: 10.1109/TSP.2014.2318132
|
[12] |
FAN H J, SONG Q, XU Z.Online learning with kernel regularized least mean square algorithms[J].Knowledge-Based Systems, 2014, 59:21-32. doi: 10.1016/j.knosys.2014.02.005
|
[13] |
DIETHE T, GIROLAMI M.Online learning with (multiple) kernels:A review[J].Neural Computation, 2013, 25(3):567-625. doi: 10.1162/NECO_a_00406
|
[14] |
HONEINE P.Analyzing sparse dictionaries for online learning with kernels[J].IEEE Transactions on Signal Processing, 2015, 63(23):6343-6353. doi: 10.1109/TSP.2015.2457396
|
[15] |
ENGEL Y, MANNOR S, MEIR R.The kernel recursive least-squares algorithm[J].IEEE Transactions on Signal Processing, 2004, 52(8):2275-2285. doi: 10.1109/TSP.2004.830985
|
[16] |
LIU W F, PARK I, PRINCIPE J C.An information theoretic approach of designing sparse kernel adaptive filters[J].IEEE Transactions on Neural Networks, 2009, 20(12):1950-1961. doi: 10.1109/TNN.2009.2033676
|
[17] |
ZHOU X R, LIU Z J, ZHU C X.Online regularized and kernelized extreme learning machines with forgetting mechanism[J].Mathematical problems in engineering, 2014, 2014:1-11. doi: 10.1007/s13042-017-0666-8
|
[18] |
ZHOU X R, WANG C H.Cholesky factorization based online regularized and kernelized extreme learning machines with forgetting mechanism[J].Neurocomputing, 2016, 174:1147-1155. doi: 10.1016/j.neucom.2015.10.033
|
[19] |
GU Y, LIU J F, CHEN Y Q, et al.TOSELM:Timeliness online sequential extreme learning machin[J].Neurocomputing, 2014, 128:119-127. doi: 10.1016/j.neucom.2013.02.047
|
[20] |
SIMONE S, DANILO C, MICHELE S, et al.Online sequential extreme learning machine with kernel[J].IEEE Transactions on Neural Networks and Learning Systems, 2015, 26(9):2214-2220. doi: 10.1109/TNNLS.2014.2382094
|
[21] |
张英堂, 马超, 李志宁, 等.基于快速留一交叉验证的核极限学习机在线建模[J].上海交通大学学报, 2014, 48(5):641-646. http://www.cnki.com.cn/Article/CJFDTOTAL-SHJT201405011.htm
ZHANG Y T, MA C, LI Z N, et al.Online modeling of kernel extreme learning machine based on fast leave-one-out cross-validation[J].Journal of Shanghai Jiaotong University, 2014, 48(5):641-646(in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-SHJT201405011.htm
|
[22] |
HUYNH H T, WON Y.Regularized online sequential learning algorithm for single-hidden layer feedforward neural networks[J].Pattern Recognition Letters, 2011, 32(14):1930-1935. doi: 10.1016/j.patrec.2011.07.016
|
[1] | REN Leliang, XIAN Yong, LIU Zhenyu, ZHANG Daqiao, LI Bing, LI Shaopeng. Reinforcement learning guidance law for maneuvering target interception based on imitation learning[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2024.0284 |
[2] | CHEN Q,AN C,XIE C C,et al. Large deformation prediction and geometric nonlinear aeroelastic analysis based on machine learning algorithm[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(3):943-952 (in Chinese). doi: 10.13700/j.bh.1001-5965.2023.0111. |
[3] | ZHU J Z,WANG C,LI X K,et al. A deep reinforcement learning based on discrete state transition algorithm for solving fuzzy flexible job shop scheduling problem[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(4):1385-1394 (in Chinese). doi: 10.13700/j.bh.1001-5965.2023.0211. |
[4] | ZHU Guangli, ZHANG Yulei, LIU Jiajia, JIAO Yixuan, LI Ziliang, ZHANG Shunxiang. Local Sparse Attention-based for Multi-modal Sarcasm Detection Model[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2024.0544 |
[5] | LI K Y,WANG Y Y,ZHU T Y,et al. Coreference resolution based on graph structure and multitask learning[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(12):3825-3833 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0941. |
[6] | JI X,WU T X,YU T,et al. Power text information extraction based on multi-task learning[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(8):2461-2469 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0683. |
[7] | YANG Huixin, WANG Xu, LI Xiang. A prediction method for solid divert and attitude control system performance based on deep neural network[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2024.0182 |
[8] | WANG P,ZHAO S L,CHEN W C. Cooperative interception strategy for midcourse guidance of GPI based on online prediction of reachable area[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(11):3463-3476 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0856. |
[9] | LIU Y H,HUANG Y,TAN H,et al. On-line prediction method of wing flexible baseline based on autoregressive model[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(11):3426-3433 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0865. |
[10] | TANG Y,DAI Q,YANG M Y,et al. Software defect prediction algorithm for intra-membrane sparrow optimizing ELM[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(2):643-654 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0438. |
[11] | MA X,XU S,SHANG P C,et al. Fault diagnosis of gearbox under open set and cross working condition based on transfer learning[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(5):1753-1760 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0719. |
[12] | SUN X T,CHENG W,CHEN W J,et al. A visual detection and grasping method based on deep learning[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(10):2635-2644 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0130. |
[13] | CHEN X M,ZHU Y C,LING J,et al. Energy-efficiency characteristic investigation of rotational inertia hydraulic converter[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(8):1982-1990 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0570. |
[14] | LIU Ren-di, JIANG Ju, ZHANG Zhe, LIU Xiang. Direct lift control technology of carrier aircraft landing based on reinforcement learning[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2023.0403 |
[15] | ZHU P R,LIU Y Z,LIU Z C,et al. Fault diagnosis of synchronous generator rotating rectifier based on CEEMD and improved ELM[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(5):1166-1175 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0376. |
[16] | GAO H T,CHEN Y X. A machine learning based method for lithium-ion battery state of health classification and prediction[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(12):3467-3475 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0154. |
[17] | CHEN H,BAI J,YIN C T,et al. Behavior based MOOC user dropout predication framework[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(1):74-82 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0188. |
[18] | ZHANG Yun, XIAO Sheng, JIANG Li-fei, MENG Wan-ting, YANG Shu-hu, HAN Yan-ling. Multivariate Machine Learning for the Significant Wave Height Retrieval Model from CYGNSS[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2023.0265 |
[19] | XIONG Shichao, NI Jiacheng, ZHANG Qun, LUO Ying, WANG Yansong. 2-D compressed sensing SAR imaging based on mixed sparse representation[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(11): 2314-2324. doi: 10.13700/j.bh.1001-5965.2021.0101 |
[20] | LI Zi-rong, YANG Yan-ping, ZHANG Zi-jian, MA Xiao-ping. Overall Design and Energy Efficiency Optimization for Communication-oriented Morphing Solar-powered UAV[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2022.0254 |
1. | 刘松福,刘星,张金坡,由远洋,周立建. 基于KB-IELM的航空装备状态预测方法研究. 国外电子测量技术. 2021(02): 43-46 . ![]() | |
2. | 戴金玲,吴明辉,刘星,李睿峰. 核极限学习机的在线状态预测方法综述. 兵器装备工程学报. 2021(06): 12-19 . ![]() | |
3. | 戴金玲,许爱强,于超,吴阳勇. 基于多元KELM的发动机状态在线预测模型. 北京航空航天大学学报. 2021(11): 2277-2286 . ![]() | |
4. | 刘星,熊厚情,赵建印,朱敏. 基于改进稀疏KELM的在线非平稳动态系统状态预测方法. 系统工程与电子技术. 2020(09): 2022-2032 . ![]() | |
5. | 张旭. 飞机发动机EGT指示系统超限故障与维修分析. 内燃机与配件. 2020(24): 142-143 . ![]() | |
6. | 朱敏,许爱强,陈强强,李睿峰. 一种基于改进KELM的在线状态预测方法. 北京航空航天大学学报. 2019(07): 1370-1379 . ![]() |