Citation: | ZHANG Wei, XU Aiqiang, GAO Mingzheet al. Online condition prediction of avionic devices based on sparse kernel incremental extreme learning machine[J]. Journal of Beijing University of Aeronautics and Astronautics, 2017, 43(10): 2089-2098. doi: 10.13700/j.bh.1001-5965.2016.0802(in Chinese) |
In order to achieve the online condition prediction for avionic devices, a sparse kernel incremental extreme learning machine (ELM) algorithm is presented. For the problem of Gram matrix expansion in kernel online learning algorithms, a novel sparsification rule is presented by measuring the instantaneous learnable information contained on a data sample for dictionary selection. The proposed sparsification method combines the constructive strategy and the pruning strategy in two stages. By minimizing the redundancy of dictionary in the constructive phase and maximizing the instantaneous conditional self-information of dictionary atoms in the pruning phase, a compact dictionary with predefined size can be selected adaptively. For the kernel weight updating of kernel based incremental ELM, an improved decremental learning algorithm is proposed by using matrix elementary transformation and block matrix inversion formula, which effectively moderate the computational complexity at each iteration.In proposed algorithm, the inverse matrix of Gram matrix of the other samples can be directly updated after one sample is deleted from previous dictionary. The experimental results of the aero-engine condition prediction show that the proposed method can make the whole average error rate reduce to 2.18% when the prediction step is equal to 20. Compared with three well-known kernel ELM online learning algorithms, the prediction accuracy is improved by 0.72%, 0.14% and 0.13% respectively.
[1] |
TIAN Z, QIAN C, GU B, et al.Electric vehicle air conditioning system performance prediction based on artificial neural network[J].Applied Thermal Engineering, 2015, 89:101-104. doi: 10.1016/j.applthermaleng.2015.06.002
|
[2] |
孙伟超, 李文海, 李文峰.融合粗糙集与D-S证据理论的航空装备故障诊断[J].北京航空航天大学学报, 2015, 41(10):1902-1909.
SUN W C, LI W H, LI W F.Avionic devices fault diagnosis based on fusion method of rough set and D-S theory[J].Journal of Beijing University of Aeronautics and Astronautics, 2015, 41(10):1902-1909(in Chinese).
|
[3] |
YE F M, ZHANG Z B, CHAKRABARTY K, et al.Board-level functional fault diagnosis using multikernel support vector machines and incremental learning[J].IEEE Transactions on Computer-aided Design of Integrated Circuits and Systems, 2014, 33(2):279-290. doi: 10.1109/TCAD.2013.2287184
|
[4] |
JIE Y.A nonlinear kernel Gaussian mixture model based inferential monitoring approach for fault detection and diagnosis of chemical processes[J].Chemical Engineering Science, 2012, 68(1):506-519. doi: 10.1016/j.ces.2011.10.011
|
[5] |
ZHAO X Q, XUE Y F, WANG T.Fault detection of batch process based on multi-way kernel T-PLS[J].Journal of Chemical and Pharmaceutical Research, 2014, 6(7):338-346.
|
[6] |
HUANG G B, ZHOU H, DING X, et al.Extreme learning machine for regression and multiclass classification[J].IEEE Transactions on Systems, Man and Cybernetics-Part B:Cybernetics, 2011, 42(2):513-529.
|
[7] |
HUANG G B, ZHU Q Y, SIEW C K.Extreme learning machine:Theory and application[J].Neurocomputing, 2006, 70(1-3):489-501. doi: 10.1016/j.neucom.2005.12.126
|
[8] |
GUO L, HAO J H, LIU M.An incremental extreme learning machine for online sequential learning problems[J].Neurocomputing, 2014, 128:50-58. doi: 10.1016/j.neucom.2013.03.055
|
[9] |
ZHAO S L, CHEN B D, ZHU P P, et al.Fixed budget quantized kernel least-mean-square algorithm[J].Signal Processing, 2013, 93(9):2759-2770. doi: 10.1016/j.sigpro.2013.02.012
|
[10] |
RICHARD C, BERMUDEZ M, HONEINE P.Online prediction of time series data with kernels[J].IEEE Transactions on Signal Processing, 2009, 57(3):1058-1067. doi: 10.1109/TSP.2008.2009895
|
[11] |
GAO W, CHEN J, RICHARD C, et al.Online dictionary learning for kernel LMS[J].IEEE Transactions on Signal Processing, 2014, 62(11):2765-2777. doi: 10.1109/TSP.2014.2318132
|
[12] |
FAN H J, SONG Q, XU Z.Online learning with kernel regularized least mean square algorithms[J].Knowledge-Based Systems, 2014, 59:21-32. doi: 10.1016/j.knosys.2014.02.005
|
[13] |
DIETHE T, GIROLAMI M.Online learning with (multiple) kernels:A review[J].Neural Computation, 2013, 25(3):567-625. doi: 10.1162/NECO_a_00406
|
[14] |
HONEINE P.Analyzing sparse dictionaries for online learning with kernels[J].IEEE Transactions on Signal Processing, 2015, 63(23):6343-6353. doi: 10.1109/TSP.2015.2457396
|
[15] |
ENGEL Y, MANNOR S, MEIR R.The kernel recursive least-squares algorithm[J].IEEE Transactions on Signal Processing, 2004, 52(8):2275-2285. doi: 10.1109/TSP.2004.830985
|
[16] |
LIU W F, PARK I, PRINCIPE J C.An information theoretic approach of designing sparse kernel adaptive filters[J].IEEE Transactions on Neural Networks, 2009, 20(12):1950-1961. doi: 10.1109/TNN.2009.2033676
|
[17] |
ZHOU X R, LIU Z J, ZHU C X.Online regularized and kernelized extreme learning machines with forgetting mechanism[J].Mathematical problems in engineering, 2014, 2014:1-11. doi: 10.1007/s13042-017-0666-8
|
[18] |
ZHOU X R, WANG C H.Cholesky factorization based online regularized and kernelized extreme learning machines with forgetting mechanism[J].Neurocomputing, 2016, 174:1147-1155. doi: 10.1016/j.neucom.2015.10.033
|
[19] |
GU Y, LIU J F, CHEN Y Q, et al.TOSELM:Timeliness online sequential extreme learning machin[J].Neurocomputing, 2014, 128:119-127. doi: 10.1016/j.neucom.2013.02.047
|
[20] |
SIMONE S, DANILO C, MICHELE S, et al.Online sequential extreme learning machine with kernel[J].IEEE Transactions on Neural Networks and Learning Systems, 2015, 26(9):2214-2220. doi: 10.1109/TNNLS.2014.2382094
|
[21] |
张英堂, 马超, 李志宁, 等.基于快速留一交叉验证的核极限学习机在线建模[J].上海交通大学学报, 2014, 48(5):641-646. http://www.cnki.com.cn/Article/CJFDTOTAL-SHJT201405011.htm
ZHANG Y T, MA C, LI Z N, et al.Online modeling of kernel extreme learning machine based on fast leave-one-out cross-validation[J].Journal of Shanghai Jiaotong University, 2014, 48(5):641-646(in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-SHJT201405011.htm
|
[22] |
HUYNH H T, WON Y.Regularized online sequential learning algorithm for single-hidden layer feedforward neural networks[J].Pattern Recognition Letters, 2011, 32(14):1930-1935. doi: 10.1016/j.patrec.2011.07.016
|
[1] | LI Huan, CUI Pengcheng, JIA Hongyin, GONG Xiaoquan, WU Xiaojun. Numerical Simulation of TSTO Interstage Separation Considering Constraint Force[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2024.0839 |
[2] | GUO Chenyang, LIU Yi, LIU Haozheng, WANG Junjie, GAO Jingcheng, FENG Shiyu. Research on oxygen consumption based inerting monolithic catalyst reactor performance[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2023.0562 |
[3] | GAO Yang, LIN Jiaquan. Optimization of cabin return air ratio based on air quality and compensation loss[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2024.0210 |
[4] | CHAI Ting, FU Ziqi, LIU Guannan, BAI Wentao, HU Wanjun, FENG Shiyu. Prediction and analysis of separation performance of on-board hollow fiber membrane[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2024.0164 |
[5] | HE Yan-tong, DENG Tian. Numerical Study of low-pressure modeling of bio-jet fuel combustion[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2023.0826 |
[6] | ZHOU Y J,WAN Q,XU Y Z,et al. Redundancy design of a FADS system on a complex leading-edge vehicle using neural network approach[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(3):757-764 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0341. |
[7] | MAO Junjie, QU Guoxin, GAO Zhenxun. Numerical investigation of heat and drag reduction by discrete microholes film in hypersonic flow[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2024.0443 |
[8] | LI C Q,ZHAN Y Q,WANG Z M,et al. Numerical simulation of iliac vein compression syndrome in hemodynamics[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(8):2646-2654 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0693. |
[9] | LEI J M,WU Z X,XIE W Y. Numerical simulation investigation on water surface skipping motion characteristics of sea-skimming projectile[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(10):2975-2983 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0813. |
[10] | CHEN B,LUO L,JIANG A L,et al. Numerical simulation of separation characteristics for internally buried weapon at high Mach number[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(7):2113-2122 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0627. |
[11] | ZHANG Pei-hong, ZHOU Gui-yu, SHEN Ying-ying, TANG Jing, ZHAO Wei, JIA Hong-yin. Research on simulation of parallel separation characteristics using NNW-FlowStar software[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2023.0275 |
[12] | XIE N,TANG Y M,ZHANG Y,et al. Numerical study of blood pump weaning effects on hemocompatibility of centrifugal blood pump[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(7):1680-1688 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0494. |
[13] | ZHANG P H,TANG Y,TANG J,et al. Simulation of cavity flow at high Mach number based on adaptive unstructured hybrid mesh[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(6):1311-1318 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0424. |
[14] | HAN Y F,HU X S,GAO Y,et al. Comparison of turbulence models for unsteady flow simulation in a long and narrow cabin[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(4):957-964 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0335. |
[15] | PENG L,LI L,ZHAO W. Numerical study on coupled heat transfer of rotating disc in centrifugal atomization[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(12):3456-3466 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0152. |
[16] | SHAO L,PENG Y,LU X,et al. Optimization method for inlet and outlet of irregular fuel tank inerting system[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(10):2628-2634 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0768. |
[17] | GUO Qi, SHEN Xiaobin, LIN Guiping, ZHANG Shijuan. Numerical simulation of icing on aircraft rotating surfaces[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(11): 2259-2269. doi: 10.13700/j.bh.1001-5965.2021.0081 |
[18] | WANG Chenchen, PAN Jun, WANG Yangyang, DUAN Weijie. Effect of suction flow rate on performance of catalytic inerting system[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(7): 1183-1189. doi: 10.13700/j.bh.1001-5965.2021.0026 |
[19] | WANG Weiqi, XING Yuming, ZHENG Wenyuan, HAO Zhaolong. Phase change heat transfer characteristics and fractal optimization of radial plate fin tube[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(12): 2520-2528. doi: 10.13700/j.bh.1001-5965.2021.0140 |
[20] | WENG Huiyan, CAI Guobiao, ZHENG Hongru, LIU Lihui, ZHANG Baiyi, HE Bijiao. Numerical simulation of effect of background pressure on electric propulsion plume field[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(10): 1854-1862. doi: 10.13700/j.bh.1001-5965.2021.0039 |
1. | 刘琦,马景辉,朱栋,柴建源. 真空平板膜除湿单元组件性能模拟分析. 水利规划与设计. 2023(02): 110-115 . ![]() | |
2. | 赵营,刘静,王亚盟. 飞机弹射起飞过程油箱燃油晃动特性分析. 飞机设计. 2023(06): 44-50+56 . ![]() |