Volume 43 Issue 10
Oct.  2017
Turn off MathJax
Article Contents
ZHANG Wei, XU Aiqiang, GAO Mingzheet al. Online condition prediction of avionic devices based on sparse kernel incremental extreme learning machine[J]. Journal of Beijing University of Aeronautics and Astronautics, 2017, 43(10): 2089-2098. doi: 10.13700/j.bh.1001-5965.2016.0802(in Chinese)
Citation: ZHANG Wei, XU Aiqiang, GAO Mingzheet al. Online condition prediction of avionic devices based on sparse kernel incremental extreme learning machine[J]. Journal of Beijing University of Aeronautics and Astronautics, 2017, 43(10): 2089-2098. doi: 10.13700/j.bh.1001-5965.2016.0802(in Chinese)

Online condition prediction of avionic devices based on sparse kernel incremental extreme learning machine

doi: 10.13700/j.bh.1001-5965.2016.0802
Funds:

National Natural Science Foundation of China 61571454

More Information
  • Corresponding author: XU Aiqiang, E-mail:hjhyautotest@sina.com
  • Received Date: 17 Oct 2016
  • Accepted Date: 28 Oct 2016
  • Publish Date: 20 Oct 2017
  • In order to achieve the online condition prediction for avionic devices, a sparse kernel incremental extreme learning machine (ELM) algorithm is presented. For the problem of Gram matrix expansion in kernel online learning algorithms, a novel sparsification rule is presented by measuring the instantaneous learnable information contained on a data sample for dictionary selection. The proposed sparsification method combines the constructive strategy and the pruning strategy in two stages. By minimizing the redundancy of dictionary in the constructive phase and maximizing the instantaneous conditional self-information of dictionary atoms in the pruning phase, a compact dictionary with predefined size can be selected adaptively. For the kernel weight updating of kernel based incremental ELM, an improved decremental learning algorithm is proposed by using matrix elementary transformation and block matrix inversion formula, which effectively moderate the computational complexity at each iteration.In proposed algorithm, the inverse matrix of Gram matrix of the other samples can be directly updated after one sample is deleted from previous dictionary. The experimental results of the aero-engine condition prediction show that the proposed method can make the whole average error rate reduce to 2.18% when the prediction step is equal to 20. Compared with three well-known kernel ELM online learning algorithms, the prediction accuracy is improved by 0.72%, 0.14% and 0.13% respectively.

     

  • loading
  • [1]
    TIAN Z, QIAN C, GU B, et al.Electric vehicle air conditioning system performance prediction based on artificial neural network[J].Applied Thermal Engineering, 2015, 89:101-104. doi: 10.1016/j.applthermaleng.2015.06.002
    [2]
    孙伟超, 李文海, 李文峰.融合粗糙集与D-S证据理论的航空装备故障诊断[J].北京航空航天大学学报, 2015, 41(10):1902-1909. http://bhxb.buaa.edu.cn/CN/abstract/abstract13502.shtml

    SUN W C, LI W H, LI W F.Avionic devices fault diagnosis based on fusion method of rough set and D-S theory[J].Journal of Beijing University of Aeronautics and Astronautics, 2015, 41(10):1902-1909(in Chinese). http://bhxb.buaa.edu.cn/CN/abstract/abstract13502.shtml
    [3]
    YE F M, ZHANG Z B, CHAKRABARTY K, et al.Board-level functional fault diagnosis using multikernel support vector machines and incremental learning[J].IEEE Transactions on Computer-aided Design of Integrated Circuits and Systems, 2014, 33(2):279-290. doi: 10.1109/TCAD.2013.2287184
    [4]
    JIE Y.A nonlinear kernel Gaussian mixture model based inferential monitoring approach for fault detection and diagnosis of chemical processes[J].Chemical Engineering Science, 2012, 68(1):506-519. doi: 10.1016/j.ces.2011.10.011
    [5]
    ZHAO X Q, XUE Y F, WANG T.Fault detection of batch process based on multi-way kernel T-PLS[J].Journal of Chemical and Pharmaceutical Research, 2014, 6(7):338-346.
    [6]
    HUANG G B, ZHOU H, DING X, et al.Extreme learning machine for regression and multiclass classification[J].IEEE Transactions on Systems, Man and Cybernetics-Part B:Cybernetics, 2011, 42(2):513-529. http://www.ntu.edu.sg/home/egbhuang/pdf/ELM-Unified-Learning.pdf
    [7]
    HUANG G B, ZHU Q Y, SIEW C K.Extreme learning machine:Theory and application[J].Neurocomputing, 2006, 70(1-3):489-501. doi: 10.1016/j.neucom.2005.12.126
    [8]
    GUO L, HAO J H, LIU M.An incremental extreme learning machine for online sequential learning problems[J].Neurocomputing, 2014, 128:50-58. doi: 10.1016/j.neucom.2013.03.055
    [9]
    ZHAO S L, CHEN B D, ZHU P P, et al.Fixed budget quantized kernel least-mean-square algorithm[J].Signal Processing, 2013, 93(9):2759-2770. doi: 10.1016/j.sigpro.2013.02.012
    [10]
    RICHARD C, BERMUDEZ M, HONEINE P.Online prediction of time series data with kernels[J].IEEE Transactions on Signal Processing, 2009, 57(3):1058-1067. doi: 10.1109/TSP.2008.2009895
    [11]
    GAO W, CHEN J, RICHARD C, et al.Online dictionary learning for kernel LMS[J].IEEE Transactions on Signal Processing, 2014, 62(11):2765-2777. doi: 10.1109/TSP.2014.2318132
    [12]
    FAN H J, SONG Q, XU Z.Online learning with kernel regularized least mean square algorithms[J].Knowledge-Based Systems, 2014, 59:21-32. doi: 10.1016/j.knosys.2014.02.005
    [13]
    DIETHE T, GIROLAMI M.Online learning with (multiple) kernels:A review[J].Neural Computation, 2013, 25(3):567-625. doi: 10.1162/NECO_a_00406
    [14]
    HONEINE P.Analyzing sparse dictionaries for online learning with kernels[J].IEEE Transactions on Signal Processing, 2015, 63(23):6343-6353. doi: 10.1109/TSP.2015.2457396
    [15]
    ENGEL Y, MANNOR S, MEIR R.The kernel recursive least-squares algorithm[J].IEEE Transactions on Signal Processing, 2004, 52(8):2275-2285. doi: 10.1109/TSP.2004.830985
    [16]
    LIU W F, PARK I, PRINCIPE J C.An information theoretic approach of designing sparse kernel adaptive filters[J].IEEE Transactions on Neural Networks, 2009, 20(12):1950-1961. doi: 10.1109/TNN.2009.2033676
    [17]
    ZHOU X R, LIU Z J, ZHU C X.Online regularized and kernelized extreme learning machines with forgetting mechanism[J].Mathematical problems in engineering, 2014, 2014:1-11. doi: 10.1007/s13042-017-0666-8
    [18]
    ZHOU X R, WANG C H.Cholesky factorization based online regularized and kernelized extreme learning machines with forgetting mechanism[J].Neurocomputing, 2016, 174:1147-1155. doi: 10.1016/j.neucom.2015.10.033
    [19]
    GU Y, LIU J F, CHEN Y Q, et al.TOSELM:Timeliness online sequential extreme learning machin[J].Neurocomputing, 2014, 128:119-127. doi: 10.1016/j.neucom.2013.02.047
    [20]
    SIMONE S, DANILO C, MICHELE S, et al.Online sequential extreme learning machine with kernel[J].IEEE Transactions on Neural Networks and Learning Systems, 2015, 26(9):2214-2220. doi: 10.1109/TNNLS.2014.2382094
    [21]
    张英堂, 马超, 李志宁, 等.基于快速留一交叉验证的核极限学习机在线建模[J].上海交通大学学报, 2014, 48(5):641-646. http://www.cnki.com.cn/Article/CJFDTOTAL-SHJT201405011.htm

    ZHANG Y T, MA C, LI Z N, et al.Online modeling of kernel extreme learning machine based on fast leave-one-out cross-validation[J].Journal of Shanghai Jiaotong University, 2014, 48(5):641-646(in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-SHJT201405011.htm
    [22]
    HUYNH H T, WON Y.Regularized online sequential learning algorithm for single-hidden layer feedforward neural networks[J].Pattern Recognition Letters, 2011, 32(14):1930-1935. doi: 10.1016/j.patrec.2011.07.016
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)  / Tables(9)

    Article Metrics

    Article views(685) PDF downloads(483) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return