Citation: | LIU Haoqiang, ZHAO Hongbo, FENG Wenquanet al. Regularized sparsity variable step-size adaptive matching pursuit algorithm for compressed sensing[J]. Journal of Beijing University of Aeronautics and Astronautics, 2017, 43(10): 2109-2117. doi: 10.13700/j.bh.1001-5965.2016.0830(in Chinese) |
Compressed sensing (CS), which could break through the bottleneck of the Nyquist sampling theorem, makes the high resolution signal acquisition possible. Reconstruction algorithm is the key part of compressed sensing, and the iterative greedy algorithm is one of highly significant research directions. A novel iterative greedy algorithm for compressed sensing, named regularized sparsity variable step-size adaptive matching pursuit (RSVssAMP) algorithm, was proposed in this paper. The regularized idea and the variable step-size adaptive idea were utilized in the new algorithm to achieve a quick and accurate reconstruction under the condition that the sparsity of a signal was unknown. Compared with traditional greedy algorithms, RSVssAMP could reconstruct the signal without prior information of the sparsity, and it could accelerate the reconstruction speed obviously and achieve better performance by acquiring a better candidate set. The Gaussian sparse signal and discrete sparse signal were taken as trial signals, and the comparisons of reconstruction probability and time were demonstrated in this paper. The simulation results indicate that the proposed algorithm could achieve a higher reconstruction precision and take shorter time when compared with the existing greedy algorithms.
[1] |
DONOHO D L.Compressed sensing[J].IEEE Transactions on Information Theory, 2006, 52(4):1289-1306. doi: 10.1109/TIT.2006.871582
|
[2] |
WANG X, ZHAO Z, ZHAO N, et al.On the application of compressed sensing in communication networks[C]//20105th International ICST Conference on Communications and Networking.Piscataway, NJ:IEEE Press, 2010:1-7.
|
[3] |
WEI T C, WANG H Y.Research on application of compressed sensing based on signal decomposition[C]//Communication Problem-Solving(ICCP).Piscataway, NJ:IEEE Press, 2014:326-331.
|
[4] |
李博. 压缩感知理论的重构算法研究[D]. 长春: 吉林大学, 2013.
LI B.Study on the reconstruction algorithms of the compressed sensing[D].Changchun:Jilin University, 2013(in Chinese).
|
[5] |
MALLAT S G, ZHANG Z.Matching pursuits with time-frequency dictionaries[J].IEEE Transactions on Signal Processing, 1993, 41(12):3397-3415. doi: 10.1109/78.258082
|
[6] |
TROPP J A, GILBERT A C.Signal recovery from random measurements via orthogonal matching pursuit[J].IEEE Transactions on Information Theory, 2007, 53(12):4655-4666. doi: 10.1109/TIT.2007.909108
|
[7] |
DONOHO D L, TSAIG Y, DRORI I, et al.Sparse solution of underdetermined systems of linear equations by stagewise orthogonal matching pursuit[J].IEEE Transactions on Information Theory, 2012, 58(2):1094-1121. doi: 10.1109/TIT.2011.2173241
|
[8] |
NEEDELL D, VERSHYNIN R.Signal recovery from incomplete and inaccurate measurements via regularized orthogonal matching pursuit[J].IEEE Journal of Selected Topics in Signal Processing, 2010, 4(2):310-316. doi: 10.1109/JSTSP.2010.2042412
|
[9] |
杨真真, 杨震, 孙林慧.信号压缩重构的正交匹配追踪类算法综述[J].信号处理, 2013, 29(4):486-496. http://www.cnki.com.cn/Article/CJFDTOTAL-XXCN201304012.htm
YANG Z Z, YANG Z, SUN L H.A survey on orthogonal matching pursuit type algorithms for signal compression and reconstruction[J].Journal of Signal Processing, 2013, 29(4):486-496(in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-XXCN201304012.htm
|
[10] |
NEEDELL D, TROPP J A.CoSaMP:Iterative signal recovery from incomplete and inaccurate samples[J].Applied & Computational Harmonic Analysis, 2008, 26(3):301-321.
|
[11] |
WEI D, MILENKOVIC O.Subspace pursuit for compressive sensing signal reconstruction[J].IEEE Transactions on Information Theory, 2009, 55(5):2230-2249. doi: 10.1109/TIT.2009.2016006
|
[12] |
DO T T, GAN L, NGUYEN N, et al.Sparsity adaptive matching pursuit algorithm for practical compressed sensing[C]//Conference on Signals.Piscataway, NJ:IEEE Press, 2008:581-587.
|
[13] |
高睿, 赵瑞珍, 胡绍海.基于压缩感知的变步长自适应匹配追踪重建算法[J].光学学报, 2010, 30(6):1639-1644.
GAO R, ZHAO R Z, HU S H.Variable step size adaptive matching pursuit algorithm for image reconstruction based on compressive sensing[J].Acta Optica Sinica, 2010, 30(6):1639-1644(in Chinese).
|
[14] |
SUN H, NI L.Compressed sensing data reconstruction using adaptive generalized orthogonal matching pursuit algorithm[C]//Computer Science and Network Technology (ICCSNT), 20133rd International Conference.Piscataway, NJ:IEEE Press, 2014:1102-1106.
|
[15] |
HUANG W Q, ZHAO J L, LV Z Q, et al.Sparsity and step-size adaptive regularized matching pursuit algorithm for compressed sensing[C]//Information Technology and Artificial Intelligence Conference.Piscataway, NJ:IEEE Press, 2014:536-540.
|
[16] |
YU Z.Variable step-size compressed sensing-based sparsity adaptive matching pursuit algorithm for speech reconstruction[C]//Chinese Control Conference.Piscataway, NJ:IEEE Press, 2014:7344-7349.
|
[17] |
LI J, WU Z, FENG H, et al.Greedy orthogonal matching pursuit algorithm for sparse signal recovery in compressive sensing[C]//Instrumentation and Measurement Technology Conference(I2MTC)Proceedings.Piscataway, NJ:IEEE Press, 2014:1355-1358.
|
[1] | SONG Jingwen, ZHANG Shuang, LI Kaixiang. Adaptive Bayesian Model Correction Method Based on Varying Observation Domain[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2024.0653 |
[2] | YANG Xin, DUO Lin, REN Yong, XU Boyu. Underwater visible light communication sensing integrated waveform design based on OTFS-LFM[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2023.0770 |
[3] | MA Z Y,ZHOU Z H,ZHANG F,et al. Analysis of airworthiness requirements of Beidou-3 airborne equipment only used for tracking[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(4):1162-1175 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0452. |
[4] | KONG Lingwei, LI Weiqi. Optimization of aircraft speed vector control based on Hp adaptive Pseudo-spectral method[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2024.0405 |
[5] | ZHU Difeng, ZHANG Yafei, GONG Xuan, YE Jianyuan, YU Jinchi, ZEN Kang, NI Pengcheng, WANG Yuxiang. Host-state awareness based video bitrate adaptation algorithm in highly dynamic links[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2024.0456 |
[6] | GE Jian-hao, GUO Jie, WANG Hao-ning, ZHANG Bao-chao, WAN Yang-yang, TANG Sheng-jing. Adaptive model predictive control for hypersonic morphing gliding vehicle[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2024.0081 |
[7] | CAO J,YIN H N,LEI X G,et al. Bearing fault diagnosis in variable working conditions based on domain adaptation[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(8):2382-2390 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0631. |
[8] | ZHOU Hao, TAO Tao. Single nighttime image dehazing algorithm based on maximum reflectivity prior and variational regularization[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2024.0457 |
[9] | CHEN Mei, MA Xue-yan, ZHANG Chi, ZHANG Jin-hong, QIAN Luo-xiong. Adaptive Incomplete Multi-view Clustering[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2023.0178 |
[10] | LEI Chao-hui, YANG Chao, SONG Chen. Optimization design of active aeroelastic wing with variable camber[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2023.0623 |
[11] | XU X Y,YAN G R,LEI Y. Surface quality optimization based on mutative scale chaos algorithm[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(12):3328-3334 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0070. |
[12] | JIN K D,CHAI H Z,SU C H,et al. Fading memory variational Bayesian adaptive filter based on variable attenuating factor[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(11):2989-2999 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0799. |
[13] | TANG Y Q,LI C H,SONG Y F,et al. Adaptive mutation sparrow search optimization algorithm[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(3):681-692 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0282. |
[14] | SUN Ren-hui, LIU Hao, DENG Kai-lian, YAN Shuai. Window-adaptive reconstruction for low-delay video compressive sensing[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2023.0333 |
[15] | HE Bing, WANG Fa-sheng, WANG Xing, SUN Fu-ming. Saliency-aware Triple Regularized Correlation Filter for UAV Object Tracking[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2023.0362 |
[16] | ZHANG P H,TANG Y,TANG J,et al. Simulation of cavity flow at high Mach number based on adaptive unstructured hybrid mesh[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(6):1311-1318 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0424. |
[17] | XIONG Junyao, WANG Rong, SUN Yibo. Appearance and action adaptive target tracking method[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(8): 1525-1533. doi: 10.13700/j.bh.1001-5965.2021.0597 |
[18] | WANG Zhichao, TENENHAUS Arthur, WANG Huiwen, ZHAO Qing. Functional regularized generalized canonical correlation analysis[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(10): 1960-1969. doi: 10.13700/j.bh.1001-5965.2021.0064 |
[19] | XIONG Shichao, NI Jiacheng, ZHANG Qun, LUO Ying, WANG Yansong. 2-D compressed sensing SAR imaging based on mixed sparse representation[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(11): 2314-2324. doi: 10.13700/j.bh.1001-5965.2021.0101 |
[20] | LIU Hao, ZHENG Haoran, HUANG Rong. Region-hierarchical predictive coding for quantized block compressive sensing[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(8): 1376-1382. doi: 10.13700/j.bh.1001-5965.2021.0511 |
1. | 陈平平,陈家辉,王宣达,方毅,王锋. Dice系数前向预测的快速正交正则回溯匹配追踪算法. 电子与信息学报. 2024(04): 1488-1498 . ![]() | |
2. | 张峰,凌锦炜,刘叶楠,赵黎. 基于DFT-SAMP算法的MIMO-VLC系统压缩感知信道估计. 光子学报. 2023(04): 52-62 . ![]() | |
3. | 张家慧,王英志,李新格,沈亮. 一种改进型烟花重构算法及其在冲击波测试领域中的应用. 长春理工大学学报(自然科学版). 2022(02): 74-83 . ![]() | |
4. | 于立君,钟飞,王辉,原新. 基于纹理信息的图像重构实验项目改进算法设计. 实验技术与管理. 2021(05): 154-157+161 . ![]() | |
5. | 季策,王金芝,李伯群. 基于RSAMP算法的OFDM稀疏信道估计. 系统工程与电子技术. 2021(08): 2290-2296 . ![]() | |
6. | 刘洲洲,张倩昀,马新华,彭寒. 基于优化离散差分进化算法的压缩感知信号重构. 吉林大学学报(工学版). 2021(06): 2246-2252 . ![]() | |
7. | 陶亮,刘海鹏,王蒙,董士谦. 基于回溯正则化的前向搜索正交匹配追踪算法研究. 陕西理工大学学报(自然科学版). 2020(02): 37-43 . ![]() | |
8. | 丁倩,胡茂海. 一种改进的压缩感知重构算法. 红外技术. 2019(04): 364-369 . ![]() | |
9. | 丁佳静,武雪姣,李雪晴. 稀疏度自适应回溯追踪算法改进. 软件导刊. 2019(08): 59-62 . ![]() | |
10. | 江晓林,唐征宇,渠苏苏. 基于SWOMP分段回溯的压缩感知改进算法. 黑龙江科技大学学报. 2019(04): 501-505 . ![]() | |
11. | 肖沈阳,金志刚,苏毅珊,武晋. 压缩感知OFDM稀疏信道估计导频设计. 北京航空航天大学学报. 2018(07): 1447-1453 . ![]() | |
12. | 赵东波,李辉. 变步长SAMP算法在雷达目标识别中的应用. 控制工程. 2018(08): 1381-1385 . ![]() | |
13. | 李琪,张欣,张平康,张航. 阈值稀疏自适应匹配追踪图像重构算法. 小型微型计算机系统. 2018(11): 2528-2532 . ![]() | |
14. | 高宇轩,孙华燕,张廷华,都琳. 压缩编码孔径成像重构算法. 兵器装备工程学报. 2017(10): 191-196 . ![]() |