ZHANG Cheng, MA Huadong, FU Huiyuanet al. Object tracking in surveillance videos using spatial-temporal correlation graph model[J]. Journal of Beijing University of Aeronautics and Astronautics, 2015, 41(4): 713-720. doi: 10.13700/j.bh.1001-5965.2014.0472(in Chinese)
Citation: CHENG Yang, CHENG Lin, ZHANG Qingzhen, et al. Aircraft predictor-corrector guidance based on online constraint limit enforcement[J]. Journal of Beijing University of Aeronautics and Astronautics, 2017, 43(10): 2143-2153. doi: 10.13700/j.bh.1001-5965.2016.0833(in Chinese)

Aircraft predictor-corrector guidance based on online constraint limit enforcement

doi: 10.13700/j.bh.1001-5965.2016.0833
More Information
  • Corresponding author: CHENG Yang, E-mail: chengyang1104@163.com
  • Received Date: 27 Oct 2016
  • Accepted Date: 06 Feb 2017
  • Publish Date: 20 Oct 2017
  • In view of current research situation that the ballistic performance and constraints are unable to be guaranteed by traditional prediction correction algorithm in the reentry process, a new reentry guidance method was proposed, which combines the offline trajectory optimization based on simple parameterization of bank angle profile and the online prediction and correction. Process constraints were analyzed through equilibrium glide condition and the monotonic property of range to bank angle profile was proved. For offline section, control model was built through control variable parameterization (CVP) and the trajectory was optimized through sequence quadratic program (SQP) to improve the ballistic performance greatly. For online section, the solution of bank angle profile was obtained in real time, which satisfied terminal constraints through trajectory iteration based on Gauss-Newton method. Gauss-Newton method has fast convergence speed and high precision for solving trajectory. Finally, a constraint limit method was proposed to cope with the problems that high L/D aircraft would make equilibrium glide condition hard to be established and that strong interference would make constraints be violated, which provided powerful protection to process constraints in reentry. The simulation results show that this method is adaptable to uncertain factors such as throwing deviation, aircraft parameters and atmospheric model, and is of engineering application value for trajectory performance guarantee.

     

  • [1]
    LU P.Entry guidance:A unified method[J].Journal of Guidance, Control, and Dynamics, 2014, 37(3):713-728. doi: 10.2514/1.62605
    [2]
    李惠峰, 张冉.再入飞行器标称迎角优化设计[J].北京航空航天大学学报, 2012, 38(8):996-1000.

    LI H F, ZHANG R.Optimal design of nominal attack of angle for re-entry vehicle[J].Journal of Beijing University of Aeronautics and Astronautics, 2012, 38(8):996-1000(in Chinese).
    [3]
    李惠峰.高超声速飞行器制导与控制技术[M].北京:中国宇航出版社, 2012:320-325.

    LI H F.Guidance and control technology for hypersonic vehicle[M].Beijing:China Aerospace Publishing House, 2012:320-325(in Chinese).
    [4]
    HANSON J.Advanced guidance and control project for reusable launch vehicles:AIAA-2000-3957[R].Reston:AIAA, 2000.
    [5]
    POWELL R W.Six-degree-of-freedom guidance and control entry analysis of the HL-20[J].Journal of Spacecraft and Rockets, 1993, 30(5):537-542. doi: 10.2514/3.25563
    [6]
    FUHRY D P.Adaptive atmospheric reentry guidance for the Kistler K-1 orbital vehicle:AIAA-1999-4211[R].Reston:AIAA, 1999.
    [7]
    LU P.Regulation about time-varying trajectories:Precision entry guidance illustrated:AIAA-1999-4070[R].Reston:AIAA, 1999.
    [8]
    LU P.An integrated approach for entry mission design and flight simulations:AIAA-2004-702[R].Reston:AIAA, 2004.
    [9]
    LU P.Predictor-corrector entry guidance for low-lifting vehicles[J].Journal of Guidance, Control, and Dynamics, 2008, 31(4):1067-1075. doi: 10.2514/1.32055
    [10]
    水尊师, 周军.基于高斯伪谱方法的再入飞行器预测校正制导方法研究[J].宇航学报, 2011, 32(6):1249-1255. http://www.cnki.com.cn/Article/CJFDTOTAL-YHXB201106008.htm

    SHUI Z S, ZHOU J.On-line predictor-corrector reentry guidance law based on gauss pseudospectral method[J].Journal of Astronautics, 2011, 32(6):1249-1255(in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-YHXB201106008.htm
    [11]
    朱国栋, 沈作军.基于轨迹线性化控制的再入轨迹跟踪制导[J].北京航空航天大学学报, 2015, 41(11):1975-1982.

    ZHU G D, SHEN Z J.Trajectory linearization control based tracking guidance design for entry flight[J].Journal of Beijing University of Aeronautics and Astronautics, 2015, 41(11):1975-1982(in Chinese).
    [12]
    赵頔, 沈作军.基于在线轨迹迭代的自适应再入制导[J].北京航空航天大学学报, 2016, 42(7):1526-1535.

    ZHAO D, SHEN Z J.Adaptive reentry guidance based on onboard trajectory iterations[J].Journal of Beijing University of Aeronautics and Astronautics, 2016, 42(7):1526-1535(in Chinese).
    [13]
    王青, 冉茂鹏.基于预测校正法的高超声速飞行器再入制导[J].北京航空航天大学学报, 2013, 39(12):1563-1567.

    WANG Q, RAN M P.Reentry guidance for hypersonic vehicle based on predictor-corrector method[J].Journal of Beijing University of Aeronautics and Astronautics, 2013, 39(12):1563-1567(in Chinese).
    [14]
    赵江, 周锐, 张超.考虑禁飞区规避的预测校正再入制导[J].北京航空航天大学学报, 2015, 41(5):864-870.

    ZHAO J, ZHOU R, ZHANG C.Predictor-corrector reentry guidance satisfying no-fly zone constraints[J].Journal of Beijing University of Aeronautics and Astronautics, 2015, 41(5):864-870(in Chinese).
    [15]
    LU P.Entry guidance and trajectory control for reusable launch vehicle[J].Journal of Guidance, Control, and Dynamics, 1997, 20(1):143-149. doi: 10.2514/2.4008
    [16]
    雍恩米, 唐国金. 高超声速滑翔式再入飞行器轨迹优化与制导方法研究[D]. 长沙: 国防科学技术大学, 2008.

    YONG E M, TANG G J.Trajectory optimization and guidance method for hypersonic glide reentry vehicle[D].Changsha:National University of Defense Technology, 2008(in Chinese).
    [17]
    PHILLIPS T H.A common aero vehicle (CAV) model, description, and employment guide[R].Schafer Corporation for AFRL and AFSPC, 2003.
    [18]
    XUE S, LU P.Constrained predictor-corrector entry guidance[J].Journal of Guidance, Control, and Dynamics, 2010, 33(4):1273-1280. doi: 10.2514/1.49557
    [19]
    SHEN Z J, LU P.Onboard generation of three-dimensional constrained entry trajectories[J].Journal of Guidance, Control, and Dynamics, 2003, 26(1):111-121. doi: 10.2514/2.5021
    [20]
    LZMAILOV A F, SOLODOV M V.Stabilized SQP revisited[J].Mathematical Programming, 2012, 133(1-2):93-120. doi: 10.1007/s10107-010-0413-3
    [21]
    LU P, FORBES S, BALDWIN M.Gliding guidance of high L/D hypersonic vehicles[C]//AIAA Guidance, Navigation, and Control Conference.Reston:AIAA, 2013:1-22.
    [22]
    LU P.Entry guidance using time-scale separation in gliding dynamics[J].Journal of Spacecraft and Rockets, 2015, 52(4):1253-1258. doi: 10.2514/1.A33295
  • Relative Articles

    [1]RAN Y T,PAN B F. A method for calculating reachability regions of lift re-entry vehicles with multiple constraints[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(3):904-909 (in Chinese). doi: 10.13700/j.bh.1001-5965.2023.0157.
    [2]LIU Y S,TANG X M,REN X M. Prediction of aircraft surface trajectory based on the GRU-IKF model with attention mechanism[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(3):1028-1036 (in Chinese). doi: 10.13700/j.bh.1001-5965.2023.0164.
    [3]WEI H,CAI G B,FAN Y H,et al. Online guidance for hypersonic vehicles in glide-reentry segment[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(1):183-192 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0965.
    [4]JING Quan, LI Mingtao, WANG Youliang. Optimization and Search Sequence for Transfer Trajectory Status in Callisto Exploration Mission[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2024.0158
    [5]LUO Q J,TIAN X,GAO Q J. Rotation binocular stereo rectification algorithm based on hierarchical spatial consistency[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(5):1551-1559 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0611.
    [6]ZHAO Xiaodong, CHEN Kai, HUANG Yujie, WANG Pengfei, WANG Ziyuan. Human 3D posture detection and modeling based on variational autoencoder in multi-vision[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2024.0070
    [7]LIU X,WANG Z Y,WANG X Y. Optimization three-vector-based model predictive current control for permanent magnet toroidal motor[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(11):3297-3309 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0833.
    [8]TIAN M Y,SHEN Z J. Trajectory planning of re-entry gliding vehicle in a class of uncertain environment[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(8):2514-2523 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0640.
    [9]HE Xueli, WANG Lijing, ZHAN Xi, MIAO Chongchong. Quantitative Real-time Prediction model of Workload in Aircraft Design Phase[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2024.0279
    [10]WANG P,ZHAO S L,CHEN W C. Cooperative interception strategy for midcourse guidance of GPI based on online prediction of reachable area[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(11):3463-3476 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0856.
    [11]ZHAO Ru-jian, YANG Wei, WU Zhen-yu, CENG Hong-cheng, CHEN Jie, MA Lei. Ship track prediction method based on LSTM and nautical chart constraints[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2023.0516
    [12]LU P F,WANG Y,QI Z,et al. Gravity-assist Earth-to-Jupiter transfer trajectories optimization and midcourse correction design in ephemeris model[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(11):3445-3455 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0819.
    [13]REN G J,HE J X. Green trajectory optimization of aircraft in terminal area[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(11):3402-3409 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0830.
    [14]GAO Y,HU Y,CHEN J Y,et al. Improved predictor-corrector guidance method for time-coordination entry[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(5):1721-1730 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0530.
    [15]FAN B X,CHEN G M,CAO Y Q. Multi-objective optimization of aerodynamic layout for hypersonic reentry vehicle[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(7):1639-1650 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0566.
    [16]WANG Yang-jie, LONG Teng, LI Jun-zhi, XU Guang-tong, SUN Jing-liang. Reentry trajectory planning for hypersonic morphing vehicles using penalty sequence convex programming[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2023.0283
    [17]ZHANG S,SONG T L,JIAO W,et al. Cooperative guidance method with interception time constraint[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(8):1956-1963 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0569.
    [18]WU Y T,LU Z,SONG H J,et al. Operation risk assessment of civil aircraft for multiple wear-out failure modes[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(10):2807-2816 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0739.
    [19]ZHENG J K,TANG S J,GUO J. Closed-loop cooperative terminal guidance law based on predictor-corrector for hypersonic gliding vehicles[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(11):3188-3196 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0043.
    [20]GONG K Q,WEI H K,LI J W,et al. Trajectory optimization algorithm of skipping missile based on deep reinforcement learning[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(6):1383-1393 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0436.
  • Cited by

    Periodical cited type(9)

    1. 程昊宇,张硕,刘泰涞,徐胜利,黄汉桥. 无人飞行器自主决策与规划技术综述. 空天防御. 2024(01): 6-15+80 .
    2. 梅泽伟,李天任,朱佳琳,邵星灵,丁天雲,刘俊. 基于DQN变动力智能决策的轨迹规划. 兵工学报. 2024(12): 4395-4406 .
    3. 张秀云,李智禹,宗群,陈钰,任梦圆,李逸群,张啸晋. 复杂环境影响下空天飞行器智能决策与控制方法发展分析. 空天技术. 2022(01): 39-53+82 .
    4. 林灵,郭晓林. 基于反席卷法的高超声速飞行器最优制导律. 计算机仿真. 2021(02): 43-46+66 .
    5. 邵雷,雷虎民,赵锦. 临近空间高超声速飞行器轨迹预测方法研究进展. 航空兵器. 2021(02): 34-39 .
    6. 余跃,王宏伦. 基于深度学习的高超声速飞行器再入预测校正容错制导. 兵工学报. 2020(04): 656-669 .
    7. 张科,石国祥,王佩. 横程动态约束的预测-校正再入制导方法. 宇航学报. 2020(04): 429-437 .
    8. 石国祥,张科,王佩,韩治国. 基于侧向机动能力预测的高超声速飞行器再入制导算法研究. 西北工业大学学报. 2020(03): 523-532 .
    9. 王肖,郭杰,唐胜景,祁帅. 基于准平衡滑翔的解析再入制导方法. 兵工学报. 2019(01): 58-67 .

    Other cited types(4)

  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(21)  / Tables(5)

    Article Metrics

    Article views(1348) PDF downloads(588) Cited by(13)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return