Zhang Dahua, Qiu Lihua, Wang Zongxue, et al. Design and realization of airport refueling automatic system based on DCS[J]. Journal of Beijing University of Aeronautics and Astronautics, 2003, 29(8): 659-662. (in Chinese)
Citation: WANG Wei, LIU Chun, LI Dongshenget al. Push-forward/pull-backward trim for helicopter based on hybrid genetic algorithm[J]. Journal of Beijing University of Aeronautics and Astronautics, 2017, 43(10): 1994-2002. doi: 10.13700/j.bh.1001-5965.2016.0834(in Chinese)

Push-forward/pull-backward trim for helicopter based on hybrid genetic algorithm

doi: 10.13700/j.bh.1001-5965.2016.0834
Funds:

Key Laboratory of National Defense Open Foundation of Shenyang Aerospace University SHSYS2015004

More Information
  • Corresponding author: WANG Wei, E-mail: wangwei7832@163.com
  • Received Date: 27 Oct 2016
  • Accepted Date: 06 Feb 2017
  • Publish Date: 20 Oct 2017
  • To solve the problems that helicopter trim model has multivariate nonlinear equations, it is difficult to determine its initial value and the global optimal solution is non-unique, an efficient hybrid iteration algorithm is presented in this paper, which combines the genetic algorithm and the quasi-Newton method. The dynamic equations of the different modules of the helicopter are introduced. In modeling the rotor, considering characteristics of the motion and control of the rotor in the actual flight environment, an aerodynamic model of rotor based on dynamic inflow and the blade element theory with the rotor trim is established. The trim control vector and the constraint equations for push-forward/pull-backward are deduced in detail based on helicopter flight dynamic model. Since the objective function is constructed, trim problems are transformed into optimal computation. UH-60A helicopter in the push-forward/pull-backward flight is trimmed, and the trim results are compared with flight test data. It is shown that the pull-backward results agree well with flight data, and there is the discrepancy between the push-forward results and flight data. The primary contribution to the discrepancy of the trim of collective and pedal comes from inaccurate prediction of the unsteady aerodynamic characteristics of the rotor. It is a universal method that can be applied to helicopter trim simulation of different stable flight conditions.

     

  • [1]
    DE MARCO A, DUKE E L, BERNDT J S.A general solution to the aircraft trim problem[C]//AIAA Modeling and Simulation Technologies Conference and Exhibit.Reston:AIAA, 2007:3.
    [2]
    张镭. 飞行模拟器飞行仿真系统建模与软件实现[D]. 哈尔滨: 哈尔滨工业大学, 2009: 62-69.

    ZHANG L.Flight simulation modeling and software development for flight simulator[D].Harbin:Harbin Institute of Technology, 2009:62-69(in Chinese).
    [3]
    PADFIELD G D.Helicopter flight dynamics:The theory and application of flying qualities and simulation modeling[M].Oxford:Blackwell Publishing Ltd., 2007:192-204.
    [4]
    SEKULA M K, GANDHI F.Effects of auxiliary lift and propulsion on helicopter vibration reduction and trim[J].Journal of Aircraft, 2004, 41(3):645-656. doi: 10.2514/1.496
    [5]
    STEIJL R, BARAKOS G, BADCOCK K.A framework for CFD analysis of helicopter rotors in hover and flight[J].Intermational Journal of Numerical Methods in Fluids, 2006, 51(8):819-847. doi: 10.1002/(ISSN)1097-0363
    [6]
    杨超, 洪冠新.求解非线性代数方程组的一种建议方法[J].飞行力学, 1997, 15(2):42-46. http://www.cnki.com.cn/Article/CJFDTOTAL-FHLX199702008.htm

    YANG C, HONG G X.A suggested method of solving the nonlinear algebraic equations[J].Flight Dynamics, 1997, 15(2):42-46(in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-FHLX199702008.htm
    [7]
    SUBRAMANIAN S, VENKATARATNAM S, GAON-KAR G H.Parallel fast-floquet analysis of trim and stability for large helicopter models[J].Mathematical and Computer Modeling, 2001, 33(10-11):1155-1176. doi: 10.1016/S0895-7177(00)00305-8
    [8]
    SCHANK T C.Optimal aeroelastic trim for rotorcraft with constrained non-unique trim solutions[D].Atlanta:Georgia Institute of Technology, 2008:87-90.
    [9]
    YAMASHITA N, FUKUSHIMA M.Modified Newton methods for solving a semi smooth reformlation of mono-tone complementarity problems[J].Math Program, 1997, 76(3):469-491. doi: 10.1007/BF02614394
    [10]
    孙传伟, 黄一敏, 高正.直升机飞行品质评估数学建模研究[J].飞行力学, 2001, 19(1):10-12. http://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201707001.htm

    SUN C W, HUANG Y M, GAO Z.Investigation of helicopter mathematical model appropriate for flying quality evaluation[J].Flight Dynamics, 2001, 19(1):10-12(in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201707001.htm
    [11]
    SUBRAMANIAN S, GAONKAR G H, MAIER T H.A theoretical and experimental investigation of hingeless-rotor stability and trim[C]//Twenty-Third European Rotorcraft Forum.Dresdoen:ERF, 1997:10-18.
    [12]
    BURDEN R L, FAIRES J D.Numerical analysis[M].7th ed.Boston:Prindle, Weber & Schmidt, 2001:851-865.
    [13]
    刘国强. 基于遗传算法的直升机旋翼桨叶气动外形优化设计[D]. 南京: 南京航空航天大学, 2011: 11-12.

    LIU G Q.Aerodynamic shape optimization design for helicopter rotor blades based on the genetic algorithm[D].Nanjing:Nanjing University of Aeronautics and Astronautics, 2011:11-12(in Chinese).
    [14]
    ZHANG L, HUANG Q T, JIANG H Z.Trimming aircraft on the ground based on the hybrid genetic algorithm[J].The Japan Society for Aeronautical and Space Sciences, 2009, 52(177):117-224.
    [15]
    王海涛, 高金源.基于混合遗传算法求解飞机平衡状态[J].航空学报, 2005, 26(4):470-475.

    WANG H T, GAO J Y.Solving the equilibrium states of aircraft based on mixture genetic algorithm[J].Acta Aeronautica et Astronautica Sinica, 2005, 26(4):470-475(in Chinese).
    [16]
    栾志博, 郑淑涛, 李洪人.基于混合遗传算法求解飞机定常状态[J].吉林大学学报(工学版), 2011, 41(1):165-170. http://www.cnki.com.cn/Article/CJFDTOTAL-JLGY201101033.htm

    LUAN Z B, ZHENG S T, LI H R.Solution of steady state of aircraft based on mixture genetic algorithm[J].Journal of Jilin University(Engineering and Technology Edition), 2011, 41(1):165-170(in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-JLGY201101033.htm
    [17]
    DAI J Y.Robust flight controller design for helicopters based on genetic algorithms[C]//Proceedings of 15th Triennial World Congress of IFAC.Barcelona:IFAC, 2002:68-75.
    [18]
    吴超, 谭剑锋, 王浩文, 等.基于GA/LM混合优化的直升机全机配平算法[J].飞行力学, 2014, 32(1):5-9. http://www.cnki.com.cn/Article/CJFDTOTAL-FHLX201401003.htm

    WU C, TAN J F, WANG H W, et al.Optimal trim for helicopter based on GA and LM hybrid algorithm[J].Flight Dynamics, 2014, 32(1):5-9(in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-FHLX201401003.htm
    [19]
    朱明勇, 招启军, 王博.基于CFD和混合配平算法的直升机旋翼地面效应模拟[J].航空学报, 2016, 37(8):2539-2551. http://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201608020.htm

    ZHU M Y, ZHAO Q J, WANG B.The simulation of helicopter rotor in-ground-effect based on CFD method and hybrid trim algorithm[J].Acta Aeronautica et Astronautica Sinica, 2016, 37(8):2539-2551(in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201608020.htm
    [20]
    TALBOT P D, TINLING B E, DECKER W A, et al.Mathematical model of a single main rotor helicopter for piloted simulation:NASA-TM-84281[R].Washington, D.C.:NASA, 1982.
    [21]
    PITT D M, PETERS D A.Theoretical prediction of dynamic inflow derivatives[J].Vertica, 1981, 5(1):21-34.
    [22]
    代冀阳, 吴国辉, 朱国民.适于直升机配平计算的混合遗传算法[J].飞行力学, 2010, 28(1):24-27. http://www.cnki.com.cn/Article/CJFDTOTAL-FHLX201001007.htm

    DAI J Y, WU G H, ZHU G M.Equilibrium computation of helicopters used by hybrid genetic algorithm[J].Flight Dynamics, 2010, 28(1):24-27(in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-FHLX201001007.htm
    [23]
    BALLINM G.Validation of a real-time engineering simulation of the UH-60A helicopter:NASA-TM-88360[R].Washington, D.C.:NASA, 1987.
    [24]
    HOWLETT J J.UH-60A black hawk engineering simulation program:VolumeⅠ-Mathematical model:NASA CR-166309[R].Washington, D.C.:NASA, 1981.
    [25]
    DREIER M E.Introduction to helicopter and tiltrotor flight simulation[M].Reston:AIAA, 2007:328.
  • Relative Articles

    [1]CAO Ziyu, YANG Jianhua. Nonlinear Optimization-based Online Temporal Calibration of Stereo Camera and IMU in Stereo Visual-Inertial Odometry[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2024.0374
    [2]HUANG Mengdie, WANG Lufeng, HUANG Xuxing, LI Shuang. Space target collision risk analysis algorithm based on the square Mahalanobis distance[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2024.0167
    [3]LIU H T,LIU X C,HUANG J F,et al. Trajectory optimization of CSTBC UAV relay communication systems with no-fly zone constraints[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(3):729-738 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0351.
    [4]ZHOU Zi-yan, LI Qiao, SHI Qi-dong. A heuristic constraint conversion scheduling method for time-triggered flows in TSN[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2023.0585
    [5]LI Zhonghua, CHEN Chan, WANG Xuejin, CHEN Weiling. Sonar Image Quality Assessment Based on Cross-Network Feature Compensation[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2024.0440
    [6]WANG Xiaoyang, REN Hengying, RAO Bo. Aircraft fuel quantity measurement algorithm based on fluid unit mass force[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2024.0108
    [7]ZHANG Y,ZHAO X Y,YANG S H,et al. Quality control model of CYGNSS sea surface wind speed retrieval based on ML combination[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(1):20-29 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0220.
    [8]FENG Chen-xi, ZHANG Di, YE Long. Omnidirectional image quality assessment based on adaptive viewport fusion[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2023.0381
    [9]CHANG Ya'nan, WANG Xianzhi, LI Guofei. Prescribed-time Convergent Cooperative Guidance Method with Impact Time and Angle Constraints[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2024.0395
    [10]LI M H,JIN S,DU Y. Adversarial attack method based on loss smoothing[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(2):663-670 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0478.
    [11]GUO Jia, ZHANG Hai-bo, PANG Zhao-jun, DU Zhong-hua. Planning Method for a Multi-debris Removal Mission Considering Space Debris Mass[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2023.0747
    [12]HE T Y,DONG Y,ZHOU S M,et al. Performance analysis and optimization of buffering/walking integrated lunar probe[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(8):2547-2556 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0634.
    [13]GAO Yang, LIN Jiaquan. Optimization of cabin return air ratio based on air quality and compensation loss[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2024.0210
    [14]SHI X S,LIN Z Y. Fixed-time distributed convex algorithm over second-order multi-agent systems under bounded disturbances[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(11):2951-2959 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0060.
    [15]ZHANG Wen-yi, TANG Yu-la-er, WANG Xu-lan, ZHOU Jing, BIAN Ke, LIU Zhi-shuo. Multi-type airport ferry vehicle scheduling with double service time windows[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2023.0579
    [16]ZHANG K Q,ZHOU X F,MEN X H,et al. Three-dimensional integrated guidance and control design with fixed-time convergence[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(4):842-852 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0360.
    [17]LI J,ZHANG R C,PAN C Y,et al. Micro immune optimization algorithm for single objective probabilistic constrained programming[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(3):525-537 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0288.
    [18]PAN L P,XIE F Y,ZHAO W W,et al. Weak supervision based blind remote sensing image mosaic quality assessment[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(9):2518-2526 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0694.
    [19]ZHONG D M,GONG H Y,SUN R. An improved STPA for accurate identification of loss scenarios[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(2):311-323 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0226.
    [20]ZHANG S,SONG T L,JIAO W,et al. Cooperative guidance method with interception time constraint[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(8):1956-1963 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0569.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)

    Article Metrics

    Article views(816) PDF downloads(383) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return