NIE Peng, ZHANG Daguo, CHEN Yanhai, et al. Carbon nanotubes thin film sensor and characterization of its strain sensing[J]. Journal of Beijing University of Aeronautics and Astronautics, 2016, 42(4): 677-684. doi: 10.13700/j.bh.1001-5965.2015.0271(in Chinese)
Citation: BAO Fujie, FANG Le. Lagrangian time auto-correlation of strain-rate tensor in channel turbulence[J]. Journal of Beijing University of Aeronautics and Astronautics, 2017, 43(12): 2513-2519. doi: 10.13700/j.bh.1001-5965.2016.0854(in Chinese)

Lagrangian time auto-correlation of strain-rate tensor in channel turbulence

doi: 10.13700/j.bh.1001-5965.2016.0854
Funds:

National Natural Science Foundation of China 11572025

National Natural Science Foundation of China 11202013

National Natural Science Foundation of China 51420105008

More Information
  • Corresponding author: FANG Le, E-mail: le.fang@buaa.edu.cn
  • Received Date: 04 Nov 2016
  • Accepted Date: 06 Feb 2017
  • Publish Date: 20 Dec 2017
  • It is confirmed that the dimensionless time for evolution of velocity gradient tensor (VGT) is local Kolmogorov time scale in homogeneous isotropic turbulence. The channel flow at Reynolds number 7 000 was calculated using large-eddy simulation in this paper. The flow field was divided into different regions according to the size of the dimensionless distance to the wall and the auto-correlation functions of different regions were normalized by local Kolmogorov time scale. The decline curves of auto-correlation functions in different regions were found not really the same. In logarithmic layer, the decline curves of auto-correlation functions in different regions almost overlapped, while the similar phenomenon did not exist in viscous bottom layer near the wall and buffer layer. The results show that local Kolmogorov time scale is not the universal dimensionless time of evolution of VGT in channel flow.

     

  • [1]
    CHEVILLARD L, MENEVEAU C.Lagrangian dynamics and statistical geometric structure of turbulence[J].Physical Review Letters, 2006, 97(17):174501. doi: 10.1103/PhysRevLett.97.174501
    [2]
    OOI A, SORIA J, CHONG M S, et al.A study of the evolution and characteristics of the invariants of the velocity-gradient tensor in isotropic turbulence[J].Journal of Fluid Mechanics, 1999, 381(1):141-174.
    [3]
    ATKINSON C, CHUMAKOV S, BRRMEJO-MORENO I, et al.Lagrangian evolution of the invariant of the velocity gradient tensor in a turbulent boundary layer[J].Physics of Fluids, 2012, 24(10):677-686.
    [4]
    MENEVEAU C.Lagrangian dynamics and models of the velocity gradient tensor in turbulent flows[J].Annual Review of Fluid Mechanics, 2011, 43(1):219-245. doi: 10.1146/annurev-fluid-122109-160708
    [5]
    KERR R M.Histograms of helicity and strain in numerical turbulence[J].Physical Review Letters, 1987, 59(7):783-786. doi: 10.1103/PhysRevLett.59.783
    [6]
    ASHURST W T, KERSTEIN A R, KERR R M, et al.Alignment of vorticity and scalar gradient with the strain rate in simulated Navier-Stokes turbulence[J].Physics of Fluids, 1987, 30(8):2343-2353. doi: 10.1063/1.866513
    [7]
    SREENIVASAN K R, ANTONIA R A.The phenomenology of small-scale turbulence[J].Annual Review of Fluid Mechanics, 1997, 29(1):435-472. doi: 10.1146/annurev.fluid.29.1.435
    [8]
    GIRIMAJI S S, POPE S B.A diffusion model for velocity gradients in turbulence[J].Physics of Fluids A:Fluid Dynamics, 1990, 2(2):242-256. doi: 10.1063/1.857773
    [9]
    MARTIN J, DOPAZO C, VALION L.Dynamics of velocity gradient invariants in turbulence:Restricted Euler and linear diffusion models[J].Physics of Fluids, 1998, 10(8):2012-2025. doi: 10.1063/1.869717
    [10]
    JEONG E, GIRIMAJI S S.Velocity-gradient dynamics in turbulence:Effect of viscosity and forcing[J].Theoretical and Computational Fluid Dynamics, 2003, 16(6):421-432. doi: 10.1007/s00162-002-0084-7
    [11]
    FANG L, BOS W J T, JIN G D.Short-time evolution of Lagrangian velocity gradient correlations in isotropic turbulence[J].Physics of Fluids, 2015, 27(12):457-472.
    [12]
    FANG L, ZHANG Y J, FANG J, et al.Relation of the fourth-order statistical invariants of velocity gradient tensor in isotropic turbulence[J].Physical Review E, 2016, 94(2):023114. doi: 10.1103/PhysRevE.94.023114
    [13]
    YU H, MENEVEAU C.Lagrangian refined Kolmogorov similarity hypothesis for gradient time-evolution in turbulence flows[J].Physical Review Letters, 2010, 104(8):084502. doi: 10.1103/PhysRevLett.104.084502
    [14]
    TENNEKES H, LUMLEY J. 湍流初级教程[M]. 施红辉, 林培锋, 金浩哲, 译. 北京: 科学出版社, 2015: 14-15.

    TENNEKES H, LUMLEY J.A first course in turbulence[M].SHI H H, LIN P F, JIN H Z, translated.Beijing:Science Press, 2015:14-15(in Chinese).
    [15]
    张兆顺, 崔桂香, 许春晓.湍流理论与模拟[M].北京:清华大学出版社, 2005:11.

    ZHANG Z S, CUI G X, XU C X.Theory and modeling of turbulence[M].Beijing:Tsinghua University Press, 2005:11(in Chinese).
    [16]
    STOLOVITZKY G, KAILASNATH P, SREENIVASAN K R.Kolmogorov's refined similarity hypothesis[J].Physical Review Letters, 1992, 69(8):1178-1181. doi: 10.1103/PhysRevLett.69.1178
    [17]
    张兆顺, 崔桂香, 许春晓.湍流大涡模拟的理论与应用[M].北京:清华大学出版社, 2008:101-104.

    ZHANG Z S, CUI G X, XU C X.Theory and application of large eddy simulation of turbulence[M].Beijing:Tsinghua University Press, 2008:101-104(in Chinese).
    [18]
    周海兵. 标量湍流的数值研究[D]. 北京: 清华大学, 2003: 39-45.

    ZHOU H B.Numerical research of scalar turbulence[D].Beijing:Tsinghua University, 2003:39-45(in Chinese).
    [19]
    XU C X, ZHANG Z S, TOONDER J M J, et al.Origin of high kurtosis levels in the viscous sublayer.Direct numerical simulation and experiment[J].Physics of Fluids, 1996, 8(7):1938-1944. doi: 10.1063/1.868973
    [20]
    FANG L, SHAO L, BERTOGLIO J P, et al.The rapid-slow decomposition of the subgrid flux in inhomogeneous scalar turbulence[J].Journal of Turbulence, 2011, 12(8):1-23. doi: 10.1080/14685248.2010.541257
  • Relative Articles

    [1]WANG X D,WANG P,SONG Y F,et al. HRRP recognition of midcourse ballistic targets based on AF-BiTCN[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(2):349-359 (in Chinese). doi: 10.13700/j.bh.1001-5965.2023.0025.
    [2]LIU He, WEI Cheng, ZHANG Zexu, SUN Bo, HU Zihang. Spacecraft Anomaly Detection Based on Filtered Autoencoder Envelope Analysis[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2024.0832
    [3]WANG L Y,HE H F,HE Y M,et al. Three-dimensional polarization filtering method of generalized oblique projection based on SVT[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(2):633-643 (in Chinese). doi: 10.13700/j.bh.1001-5965.2023.0019.
    [4]WANG D,YANG J,XIONG K. Autonomous navigation method of satellite constellation based on adaptive UKF[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(8):2655-2666 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0696.
    [5]SHI Chenfa, XIONG Zhi, JIANG Xu, LI Qijie, WANG Zhengchun. Cooperative Navigation for UAV Swarm Based on AHRS[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2024.0343
    [6]WAN Hongfa, LI Shanshan, LI Xinxing, TAN Xuli, PEI Xianyong. Analysis of observable degree of gravity aided inertial navigation[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2024.0308
    [7]YIN Q L,CHEN Q,WANG Z Y,et al. Trajectory programming method of gliding-guided projectiles for penetration[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(10):3151-3161 (in Chinese). doi: 10.13700/j.bh.1001-5965.2023.0049.
    [8]NIE Li, LI Chenliang, LIU Wangkui, SHEN Haidong, LIU Yanbin, CHEN Jinbao. Adaptive neural network based fixed-time command-filtered control for quadrotor unmanned aerial vehicles[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2024.0403
    [9]PAN C Z,HE G,LI Z J,et al. Adaptive filtered control for uncertain electro-hydraulic servo systems with time-varying output constraints[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(6):1819-1828 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0497.
    [10]LI H,ZHONG H P,ZHANG P,et al. Multi-shift interferometric phase filtering method based on convolutional neural network[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(6):2043-2050 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0805.
    [11]LIU W,LIU C Y,GUO X K,et al. Deployment optimization method for missile early warning radar under complex and multi-directional missile threats[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(4):1392-1404 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0486.
    [12]CHEN Hui, LIU Meng-bo, LIAN Feng, HAN Chong-zhao. Star convex irregular shape multi-extended target PMBM filter[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2023.0766
    [13]WANG Zhi-hui, XIANG Zhi-ning, GAO Ping. Research on Uncertainty in Kill Effectiveness of Anti-Ship Ballistic Missiles[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2023.0774
    [14]LIU S S,LI X,MAN H J,et al. Ballistic coefficient solution for non-cooperative targets and its application[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(5):1036-1043 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0414.
    [15]MA Y F,DAI S W,WANG R,et al. Nonlinear spatial K-means clustering algorithm for detection of zero-speed interval in inertial pedestrian navigation[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(10):2841-2850 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0764.
    [16]ZHANG Yun-jie, ZHOU Jie-xin, ZHANG Feng-zhe, ZHOU Rui, ZOU Ting. Reachability Evaluation Method for Ballistic Missile Based on Extended Boundary Method[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2023.0630
    [17]JIN K D,CHAI H Z,SU C H,et al. Fading memory variational Bayesian adaptive filter based on variable attenuating factor[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(11):2989-2999 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0799.
    [18]SHU Hong-bin, YU Chuan-qiang, LIU Zhi-hao, TANG Sheng-jin, CHEN Jian-wei. State estimation of multi-axle special vehicles by fusion of neural network and unscented Kalman filter[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2022.0535
    [19]DAI Hongde, ZHANG Xiaoyu, ZHENG Baidong, DAI Shaowu, ZHENG Weiwei. Inertial pedestrian navigation algorithm based on zero velocity update and attitude self-observation[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(7): 1135-1144. doi: 10.13700/j.bh.1001-5965.2021.0037
    [20]WU Lan, WU Yuanming, KONG Fanshi, LI Binquan. Traffic signal timing method based on deep reinforcement learning and extended Kalman filter[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(8): 1353-1363. doi: 10.13700/j.bh.1001-5965.2021.0529
  • Cited by

    Periodical cited type(2)

    1. 单新有,李映坤,许进升,朱敏,陈雄,何勇. 膏体推进剂近燃面区域的热解与燃烧过程. 火炸药学报. 2024(09): 830-839 .
    2. 单新有,李映坤,武炎,陈雄,何勇. 基于MAC方法的膏体推进剂管道流动特性. 航空动力学报. 2023(10): 2430-2440 .

    Other cited types(1)

  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(3)  / Tables(1)

    Article Metrics

    Article views(742) PDF downloads(457) Cited by(3)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return