Citation: | MIAO Jisong, SHAO Qiongling, REN Yuanet al. Coordinate rotation transformation method based on ternary angle[J]. Journal of Beijing University of Aeronautics and Astronautics, 2017, 43(12): 2539-2546. doi: 10.13700/j.bh.1001-5965.2016.0882(in Chinese) |
Quaternion and Euler angle are used to describe coordinate transformation. Euler angle is characterized by three-time rotation and three parameters, and there are 12 kinds of rotation order. The characteristics of the quaternion are described by one rotation and four parameters. Using Euler angle is easy to cause gimbal lock phenomenon. Although it can avoid gimbal lock phenomenon, quaternion is more than Euler angles with one dimension and 33% amount of data. It may be illegal due to the accumulation of rounding error of floating point. To avoid the defects of the above methods, a new coordinate transformation method was proposed and two new concepts of deflection-vector axis and deflection-vector angle were introduced. The coordinate rotation transformation matrix based on the ternary angle was strictly deduced. Compared with the Euler rotation transformation, this method needs less rotation and avoids gimbal lock phenomenon; compared with the quaternion, it needs less parameters and is easy to understand. This method is more convenient for the description of the compound rotation. The proposed method provides more convenient mathematical means for the design and analysis of attitude transformation in related fields, such as inertial navigation and rotation modulation.
[1] |
DIEBEL J.Representing attitude:Euler angles, unit quaternions, and rotation vectors[J].Matrix, 2006, 58(15-16):1-35. http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.110.5134
|
[2] |
余杨, 张洪钺.圆锥运动及其影响的3种描述方法[J].北京航空航天大学学报, 2008, 34(8):956-960. http://bhxb.buaa.edu.cn/CN/abstract/abstract9392.shtml
YU Y, ZHANG H Y.Three description of coning motion and its influence[J].Journal of Beijing University of Aeronautics and Astronautics, 2008, 34(8):956-960(in Chinese). http://bhxb.buaa.edu.cn/CN/abstract/abstract9392.shtml
|
[3] |
尹剑, 陈红, 杨萌, 等.捷联姿态计算中方向余弦与四元数法分析比较[J].四川兵工学报, 2015, 36(9):106-110. http://www.doc88.com/p-7028973707257.html
YIN J, CHEN H, YANG M, et al.Analysis and comparison of direction cosine matrix and quaternion methods for strapdown inertial navigation attitude algorithm[J].Journal of Sichuan Ordnance, 2015, 36(9):106-110(in Chinese). http://www.doc88.com/p-7028973707257.html
|
[4] |
HUANG Z, LI Y W, GAO F.The expression of the orientation of a spatial moving unit by Euler angle[J].Journal of Yanshan University, 2002, 26(3):189-192. http://en.cnki.com.cn/Article_en/CJFDTOTAL-DBZX200203000.htm
|
[5] |
李跃军, 阎超.飞行器姿态角解算的全角度双欧法[J].北京航空航天大学学报, 2007, 33(5):505-508. http://bhxb.buaa.edu.cn/CN/abstract/abstract9525.shtml
LI Y J, YAN C.Improvement of dual-Euler method for full scale Eulerian angles solution of aircraft[J].Journal of Beijing University of Aeronautics and Astronautics, 2007, 33(5):505-508(in Chinese). http://bhxb.buaa.edu.cn/CN/abstract/abstract9525.shtml
|
[6] |
刘俊峰.三维转动的四元数表述[J].大学物理, 2004, 23(4):39-43. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=dxwl200404014&dbname=CJFD&dbcode=CJFQ
LIU J F.Three dimensional rotation represented by quaternion[J].College Physics, 2004, 23(4):39-43(in Chinese). http://kns.cnki.net/KCMS/detail/detail.aspx?filename=dxwl200404014&dbname=CJFD&dbcode=CJFQ
|
[7] |
邢燕. 四元数及其在图形图像处理中的应用研究[D]. 合肥: 合肥工业大学, 2009: 1-8. http://cdmd.cnki.com.cn/article/cdmd-10359-2010036953.htm
XING Y.Research on quaternion and its applications in graphics and image processing[D].Hefei:Hefei University of Technology, 2009:1-8(in Chinese). http://cdmd.cnki.com.cn/article/cdmd-10359-2010036953.htm
|
[8] |
封文春, 林贵平.四元数在弹射座椅性能仿真中的应用[J].北京航空航天大学学报, 2006, 32(8):881-884. http://bhxb.buaa.edu.cn/CN/abstract/abstract9751.shtml
FENG W C, LIN G P.Application of quaternion in ejection seat performance simulation[J].Journal of Beijing University of Aeronautics and Astronautics, 2006, 32(8):881-884(in Chinese). http://bhxb.buaa.edu.cn/CN/abstract/abstract9751.shtml
|
[9] |
ZHANG R H, JIA H G, CHEN T, et al.Attitude solution for strapdown inertial navigation system based on quaternion algorithm[J].Optics and Precision Engineering, 2008, 16(10):1963-1970. http://en.cnki.com.cn/Article_en/CJFDTOTAL-GXJM200810031.htm
|
[10] |
袁赣南, 张涛.四元数UKF超紧密组合导航滤波方法[J].北京航空航天大学学报, 2010, 36(7):762-766. http://bhxb.buaa.edu.cn/CN/abstract/abstract8434.shtml
YUAN G N, ZHANG T.Quaternion unscented Kalman filtering for ultra-tight integration[J].Journal of Beijing University of Aeronautics and Astronautics, 2010, 36(7):762-766(in Chinese). http://bhxb.buaa.edu.cn/CN/abstract/abstract8434.shtml
|
[11] |
XIA X, JING W, LI C, et al.Time-shared scheme design for attitude control system during space separation[J].Aerospace Science and Technology, 2011, 15(2):108-116. doi: 10.1016/j.ast.2010.06.005
|
[12] |
VASS G.Avoiding gimbal lock[J].Computer Graphics World, 2009, 32(6):10-11. http://connection.ebscohost.com/c/articles/42208299/avoiding-gimbal-lock
|
[13] |
赵庆涛, 邢建平, 王康, 等.基于体感识别的人形机器人姿态控制策略研究[J].互联网天地, 2016, 13(5):14-24. http://www.cqvip.com/QK/87184X/201605/668984832.html
ZHAO Q T, XING J P, WANG K, et al.Research on humanoid robot posture control strategy based on somatosensory recognition[J].China Internet, 2016, 13(5):14-24(in Chinese). http://www.cqvip.com/QK/87184X/201605/668984832.html
|
[14] |
刘建洲.四元数体上的矩阵及其优化理论[J].数学学报, 1992, 35(6):831-838. http://www.cqvip.com/QK/94850X/199206/877142.html
LIU J Z.Matrix and its optimization theory on quaternion[J].Acta Mathematica Sinica, 1992, 35(6):831-838(in Chinese). http://www.cqvip.com/QK/94850X/199206/877142.html
|
[15] |
SCHMIDT J, NIEMANN H.Using quaternions for parametrizing 3-d rotations in unconstrained nonlinear optimization[C]//Proceedings of the Vision Modeling and Visualization Conference, VMV.[S.l.]:Aka Gmbh, 2001:399-406.
|
[16] |
徐烨烽, 吕妍红, 仇海涛.基于MEMS器件的旋转调制式航姿参考系统设计[J].北京航空航天大学学报, 2010, 36(11):1343-1347. http://bhxb.buaa.edu.cn/CN/abstract/abstract11815.shtml
XU Y F, LV Y H, QIU H T.Design of rotation modulation on AHRS based on MEMS sensor[J].Journal of Beijing University of Aeronautics and Astronautics, 2010, 36(11):1343-1347(in Chinese). http://bhxb.buaa.edu.cn/CN/abstract/abstract11815.shtml
|
[17] |
赵晓伟, 李江, 党宁, 等.基于单轴连续旋转调制的方位对准技术[J].导弹与航天运载技术, 2016(1):26-30. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=ddyh201601010&dbname=CJFD&dbcode=CJFQ
ZHAO X W, LI J, DANG N, et al.Research on azimuth alignment technology based on the single axis continuous rotation modulation[J].Missiles and Space Vehicles, 2016(1):26-30(in Chinese). http://kns.cnki.net/KCMS/detail/detail.aspx?filename=ddyh201601010&dbname=CJFD&dbcode=CJFQ
|
[18] |
蔡山波. 双轴旋转捷联惯导系统旋转控制算法研究[D]. 北京: 北京理工大学, 2016. http://cdmd.cnki.com.cn/Article/CDMD-10007-1016717719.htm
CAI S B.Control algorithm of dual-axis rotation SINS framework[D].Beijing:Beijing Institute of Technology, 2016(in Chinese). http://cdmd.cnki.com.cn/Article/CDMD-10007-1016717719.htm
|