Volume 43 Issue 12
Dec.  2017
Turn off MathJax
Article Contents
NIE Chunyu, ZHU Ming, ZHENG Zewei, et al. Airship control based on Q-Learning algorithm and neural network[J]. Journal of Beijing University of Aeronautics and Astronautics, 2017, 43(12): 2431-2438. doi: 10.13700/j.bh.1001-5965.2016.0903(in Chinese)
Citation: NIE Chunyu, ZHU Ming, ZHENG Zewei, et al. Airship control based on Q-Learning algorithm and neural network[J]. Journal of Beijing University of Aeronautics and Astronautics, 2017, 43(12): 2431-2438. doi: 10.13700/j.bh.1001-5965.2016.0903(in Chinese)

Airship control based on Q-Learning algorithm and neural network

doi: 10.13700/j.bh.1001-5965.2016.0903
Funds:

National Natural Science Foundation of China 61503010

the Fundamental Research Funds for the Central Universities YWF-14-RSC-103

More Information
  • Corresponding author: ZHU Ming, E-mail:zhuming@buaa.edu.cn
  • Received Date: 29 Nov 2016
  • Accepted Date: 06 Feb 2017
  • Publish Date: 20 Dec 2017
  • An autonomous on-line learning control strategy based on adaptive modeling mechanism was proposed aimed at system modeling and parameter identification problems resulting from dynamic model uncertainties in modern airship control. An adaptive method to establish airship control Markov decision process (MDP) model was introduced on the foundation of analyzing airship's actual motion. On-line learning was carried out by Q-Learning algorithm, and cerebellar model articulation controller (CMAC) network was brought in for generalization of action value functions to accelerate algorithm convergence speed. Simulations of this autonomous on-line learning controller and comparisons with parameters turned PID controllers in normal control tasks were presented to demonstrate Q-Learning controller's effectiveness. The results show that the controller's on-line learning processes can converge in a few hours and the airship control MDP model established by the adaptive method satisfies the need of normal control tasks. The controller designed in this paper obtains similar precision as PID controllers and performs even more intelligently.

     

  • loading
  • [1]
    PRENTICE B E, KNOTTS R.Cargo airships:International competition[J].Journal of Transportation Technologies, 2014, 4:187-195. doi: 10.4236/jtts.2014.43019
    [2]
    赵达, 刘东旭, 孙康文, 等.平流层飞艇研制现状、技术难点及发展趋势[J].航空学报, 2016, 37(1):45-56. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=hkxb201601004&dbname=CJFD&dbcode=CJFQ

    ZHAO D, LIU D X, SUN K W, et al.Research status, technical difficulties and development trend of stratospheric airship[J].Acta Aeronautica et Astronautica Sinica, 2016, 37(1):45-56(in Chinese). http://kns.cnki.net/KCMS/detail/detail.aspx?filename=hkxb201601004&dbname=CJFD&dbcode=CJFQ
    [3]
    郭虓. 平流层浮空器轨迹优化研究[D]. 北京: 北京航空航天大学, 2013: 29-36.

    GUO X.Trajectory optimization research for stratospheric aerostat[D].Beijing:Beihang University, 2013:29-36(in Chinese).
    [4]
    KHOURY G A.Airship technology[M].New York:Cambridge University Press, 2012:34-40.
    [5]
    YANG Y, WU J, ZHENG W.Positioning control for an autonomous airship[J].Journal of Aircraft, 2016, 53(6):1638-1646. doi: 10.2514/1.C033709
    [6]
    ZHENG Z W, ZHU M, SHI D L, et al.Hovering control for a stratospheric airship in unknown wind:AIAA-2014-0973[R].Reston:AIAA, 2014. doi: 10.2514/6.2014-0973
    [7]
    ZHENG Z, LIU L, ZHU M.Integrated guidance and control path following and dynamic control allocation for a stratospheric airship with redundant control systems[J].Proceedings of the Institution of Mechanical Engineers, Part G:Journal of Aerospace Engineering, 2016, 230(10):1813-1826. doi: 10.1177/0954410015613738
    [8]
    YANG Y, YAN Y, ZHU Z, et al.Positioning control for an unmanned airship using sliding mode control based on fuzzy approximation[J].Proceedings of the Institution of Mechanical Engineers, Part G:Journal of Aerospace Engineering, 2014, 228(14):2627-2640. doi: 10.1177/0954410014523577
    [9]
    ABBEEL P, COATES A, QUIGLEY M, et al.An application of reinforcement learning to aerobatic helicopter flight[C]//Advances in Neural Information Processing Systems, 2007:1-8. http://ieeexplore.ieee.org/document/6287086/
    [10]
    徐昕.增强学习与近似动态规划[M].北京:科学出版社, 2010:18-27.

    XU X.Reinforcement learning and approximate dynamic programing[M].Beijing:Science Press, 2010:18-27(in Chinese).
    [11]
    PEARRE B, BROWN T X.Model-free trajectory optimization for unmanned aircraft serving as data ferries for widespread sensors[J].Remote Sensing, 2012, 4(10):2971-3005. http://www.oalib.com/paper/166731
    [12]
    RAGI S, CHONG E K P.UAV path planning in a dynamic environment via partially observable Markov decision process[J].IEEE Transactions on Aerospace and Electronic Systems, 2013, 49(4):2397-2412. doi: 10.1109/TAES.2013.6621824
    [13]
    DUNN C, VALASEK J, KIRKPATRICK K.Unmanned air system search and localization guidance using reinforcement learning:AIAA-2012-2589[R].Reston:AIAA, 2012. doi: 10.2514/6.2012-2589
    [14]
    ZHANG B, MAO Z, LIU W, et al.Geometric reinforcement learning for path planning of UAVs[J].Journal of Intelligent & Robotic Systems, 2015, 77(2):391-409. doi: 10.1007/s10846-013-9901-z
    [15]
    FAUST A.Reinforcement learning and planning for preference balancing tasks[J].AI Matters, 2015, 1(3):8-12. 10.1145/2735392.2735396
    [16]
    KO J, KLEIN D J, FOX D, et al.Gaussian processes and reinforcement learning for identification and control of an autonomous blimp[C]//Proceedings 2007 IEEE International Conference on Robotics and Automation.Piscataway, NJ:IEEE Press, 2007:742-747. http://ieeexplore.ieee.org/document/4209179/
    [17]
    ROTTMANN A, PLAGEMANN C, HILGERS P, et al.Autonomous blimp control using model-free reinforcement learning in a continuous state and action space[C]//2007 IEEE/RSJ International Conference on Intelligent Robots and Systems.Piscataway, NJ:IEEE Press, 2007:1895-1900. http://ieeexplore.ieee.org/document/4399531/
    [18]
    LIN C M, PENG Y F.Adaptive CMAC-based supervisory control for uncertain nonlinear systems[J].IEEE Transactions on Systems, Man, and Cybernetics, Part B(Cybernetics), 2004, 34(2):1248-1260. doi: 10.1109/TSMCB.2003.822281
    [19]
    SCHMIDT D K.Modeling and near-space station keeping control of a large high-altitude airship[J].Journal of Guidance, Control, and Dynamics, 2007, 30(2):540-547. doi: 10.2514/1.24865
    [20]
    LS-S1200 UAV airship system overview parameters[EB/OL].[2017-12-18].http://www.lonsan.com.cn/english/Products_1.asp?oneclass=5&pid=13.
    [21]
    ATAEI M, YOUSEFI-KOMA A.Three-dimensional optimal path planning for waypoint guidance of an autonomous underwater vehicle[J].Robotics and Autonomous Systems, 2015, 67:23-32. doi: 10.1016/j.robot.2014.10.007
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(3)

    Article Metrics

    Article views(731) PDF downloads(567) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return