Volume 43 Issue 12
Dec.  2017
Turn off MathJax
Article Contents
DUAN Yongsheng, ZHAO Jiguang, CHEN Peng, et al. Analysis method for hybrid uncertainty of risk considering distribution parameters dependency[J]. Journal of Beijing University of Aeronautics and Astronautics, 2017, 43(12): 2439-2448. doi: 10.13700/j.bh.1001-5965.2016.0935(in Chinese)
Citation: DUAN Yongsheng, ZHAO Jiguang, CHEN Peng, et al. Analysis method for hybrid uncertainty of risk considering distribution parameters dependency[J]. Journal of Beijing University of Aeronautics and Astronautics, 2017, 43(12): 2439-2448. doi: 10.13700/j.bh.1001-5965.2016.0935(in Chinese)

Analysis method for hybrid uncertainty of risk considering distribution parameters dependency

doi: 10.13700/j.bh.1001-5965.2016.0935
More Information
  • Corresponding author: ZHAO Jiguang, E-mail:jiguang_zhao@aliyun.com
  • Received Date: 12 Dec 2016
  • Accepted Date: 10 Mar 2017
  • Publish Date: 20 Dec 2017
  • In view of hybrid uncertainty propagation with parameters dependency of variables in quantified risk assessment, a two-level hybrid uncertainty presentation and propagation framework considering parameters total dependency, partial dependency and independency was proposed, in which inner and outer parameters were specified with probability and possibility, and the numerical values were calculated by Monte Carlo simulation and fuzzy extension principle. Based on the epidemic uncertainty parameter dependency, a model with epidemic uncertainty parameters dependency and a dependency coefficient were constructed. An uncertainty propagation algorithm based on the D-S evidence theory and random set theory for parameters sampled independently was built, which, compared with the two-level Monte Carlo method presented with probability, reduced the time costs largely. Leakage rate of the hydrogen and oxygen co-bottom tank was taken as an example, and the effectiveness and feasibility of the proposed method were validated.

     

  • loading
  • [1]
    ABDELLAOUI M, LUCE R D, MACHINA M J, et al.Uncertainty and risk:Mental, formal, experimental representations[M/OL].Berlin:Springer-Verlag, 2007:5-98[2017-09-30].http://www.springer.com/us/book/9783540489344.
    [2]
    HELTON J C, JOHNSON J D, OBERKAMPF W L, et al.Representation of analysis results involving aleatory and epistemic uncertainty[J].International Journal of General Systems, 2010, 39(6):605-646. doi: 10.1080/03081079.2010.486664
    [3]
    HELTON J C.Uncertainty and sensitivity analysis in the presence of stochastic and subjective uncertainty[J].Journal of Statistical Computation and Simulation, 1997, 57(1-4):3-76. doi: 10.1080/00949659708811803
    [4]
    GUYONNET D, BOURGINE B, DUBOIS D, et al.Hybrid approach for addressing uncertainty in risk assessments[J].Journal of Environmental Engineering, 2003, 129(1):68-78. doi: 10.1061/(ASCE)0733-9372(2003)129:1(68)
    [5]
    MOENS D, HANSS M.Non-probabilistic finite element analysis for parametric uncertainty treatment in applied mechanics:Recent advances[J].Finite Elements in Analysis & Design, 2011, 47(1):4-16. https://www.sciencedirect.com/science/article/pii/S0168874X10001149
    [6]
    ROHMER J, BAUDRIT C.The use of the possibility theory to investigate the epistemic uncertainties within scenario-based earthquake risk assessments[J].Natural Hazards, 2011, 56(3):613-632. doi: 10.1007/s11069-010-9578-6
    [7]
    AGARWAL H, RENAUD J E, PRESTON E L, et al.Uncertainty quantification using evidence theory in multidisciplinary design optimization[J].Reliability Engineering & System Safety, 2004, 85(1):281-294. https://www.sciencedirect.com/science/article/pii/S0951832004000663
    [8]
    SHAH H, HOSDER S, WINTER T.Quantification of margins and mixed uncertainties using evidence theory and stochastic expansions[J].Reliability Engineering & System Safety, 2015, 138:59-72. http://www.sciencedirect.com/science/article/pii/S0951832015000228
    [9]
    RAO K D, GOPIKA V, RAO V V S S, et al.Dynamic fault tree analysis using Monte Carlo simulation in probabilistic safety assessment[J].Reliability Engineering & System Safety, 2009, 94(4):872-883. http://www.sciencedirect.com/science/article/pii/S0951832008002354
    [10]
    BARALDI P, ZIO E.A combined Monte Carlo and possibilistic approach to uncertainty propagation in event tree analysis[J].Risk Analysis, 2008, 28(5):1309-1326. doi: 10.1111/risk.2008.28.issue-5
    [11]
    BAUDRIT C, DUBOIS D, GUYONNET D.Joint propagation and exploitation of probabilistic and possibilistic information in risk assessment[J].IEEE Transactions on Fuzzy Systems, 2006, 14(5):593-608. doi: 10.1109/TFUZZ.2006.876720
    [12]
    DEMPSTER A P.Upper and lower probabilities induced by a multivalued mapping[J].Annals of Mathematical Statistics, 1967, 38(2):325-339. doi: 10.1214/aoms/1177698950
    [13]
    SHAFER G.A mathematical theory of evidence[J].Technometrics, 1978, 20(1):579-601. https://econpapers.repec.org/paper/icrwpicer/03-2001.htm
    [14]
    KAY R U.Fundamentals of the Dempster-Shafer theory and its applications to system safety and reliability modelling[J].Reliability:Theory & Applications, 2007, 2:173-185. http://www.rakowsky.eu/pdf/P-NB_ppt.pdf
    [15]
    GUAN J W, BELL D A.Evidence theory and its applications.Vol.2[M].New York:Elsevier Science, 1991:37-53.
    [16]
    SADIQ R, NAJJARAN H, KLEINER Y.Investigating evidential reasoning for the interpretation of microbial water quality in a distribution network[J].Stochastic Environmental Research and Risk Assessment, 2006, 21(1):63-73. doi: 10.1007/s00477-006-0044-7
    [17]
    GRABISCH M.Dempster-Shafer and possibility theory[M].Berlin:Springer, 2016:377-437.
    [18]
    DUBOIS D, NGUYEN H T, PRADE H.Possibility theory, probability and fuzzy sets misunderstandings, bridges and gaps[M]//DUBOIS D, PRADE H.Fundamentals of fuzzy sets.Berlin:Springer, 2000:343-438. doi: 10.1007/978-1-4615-4429-6_8
    [19]
    ROSS T J.Fuzzy logic with engineering applications[M].New York:John Wiley & Sons, 2009:408-433.
    [20]
    DUBOIS D.Fuzzy sets and systems:Theory and applications[M].Orlando:Academic Press, 1980:9-146.
    [21]
    DUBOIS D.Possibility theory and statistical reasoning[J].Computational Statistics & Data Analysis, 2006, 51(1):47-69. https://www.sciencedirect.com/science/article/pii/S0167947306001149
    [22]
    PEDRONI N, ZIO E.Empirical comparison of methods for the hierarchical propagation of hybrid uncertainty in risk assessment, in presence of dependences[J].International Journal of Uncertainty, Fuzziness and Knowledge-based Systems, 2012, 20(4):509-557. doi: 10.1142/S0218488512500250
    [23]
    王荣宗, 孙天辉.低温贮箱共底真空性能分析及测试[J].导弹与航天运载技术, 2002(2):47-51. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=ddyh200202009&dbname=CJFD&dbcode=CJFQ

    WANG R Z, SUN T H.Analysis and measure of vacuum character for the co-bulkhead of the cryogenic tanks[J].Missiles and Space Vehicles, 2002(2):47-51(in Chinese). http://kns.cnki.net/KCMS/detail/detail.aspx?filename=ddyh200202009&dbname=CJFD&dbcode=CJFQ
    [24]
    VOSE D.Risk analysis:A quantitative guide[M].New York:John Wiley & Sons, 2007:52-158.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(13)  / Tables(3)

    Article Metrics

    Article views(693) PDF downloads(349) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return