Volume 43 Issue 10
Oct.  2017
Turn off MathJax
Article Contents
YANG Jianlong, LIU Meng, A Ronget al. Influence of hypersonic thermo-chemical non-equilibrium on aerodynamic thermal environments[J]. Journal of Beijing University of Aeronautics and Astronautics, 2017, 43(10): 2063-2072. doi: 10.13700/j.bh.1001-5965.2016.0952(in Chinese)
Citation: YANG Jianlong, LIU Meng, A Ronget al. Influence of hypersonic thermo-chemical non-equilibrium on aerodynamic thermal environments[J]. Journal of Beijing University of Aeronautics and Astronautics, 2017, 43(10): 2063-2072. doi: 10.13700/j.bh.1001-5965.2016.0952(in Chinese)

Influence of hypersonic thermo-chemical non-equilibrium on aerodynamic thermal environments

doi: 10.13700/j.bh.1001-5965.2016.0952
More Information
  • Corresponding author: LIU Meng, E-mail:liumeng@buaa.edu.cn
  • Received Date: 19 Dec 2016
  • Accepted Date: 17 Mar 2017
  • Publish Date: 20 Oct 2017
  • Severe aerodynamic heating phenomenon occurs in hypersonic flight. Thermal protection system design can be effectively guided by considering the influence of hypersonic thermo-chemical non-equilibrium on aerodynamic thermal environment. Park and Gupta's thermo-chemical non-equilibrium models were used to numerically calculate the 5 species (N2, O2, N, O, NO) and 17 groups of chemical reactions, and the influence of their thermo-chemical non-equilibrium on hypersonic vehicles' aerodynamic thermal environments was compared with that obtained from perfect gas and thermo-chemical equilibrium models. In the thermo-chemical non-equilibrium model, flow field temperatures are lower and shock standoff distances are smaller than those of the perfect gas model. The larger the gas density after shock wave is, the smaller the shock standoff distance is. Therefore, the shock standoff distance of thermo-chemical equilibrium model is the smallest due to the larger gas density caused by molecular dissociation and chemical reaction effects. The numerical heat flux loads of perfect gas and thermo-chemical equilibrium models are larger than the experimental data. There are small differences between Park's and Gupta's thermo-chemical non-equilibrium model when they are used to numerically calculate the shock standoff distance and aerodynamic load. The calculated values of heat flux load of Park's model are larger, while those of Gupta's model are in good agreement with the experiments. Therefore, Gupta's model is more reliable to predict hypersonic vehicles' aerodynamic thermal environments.

     

  • loading
  • [1]
    SCALABRIN L C, BOYD I D.Numerical simulation of weakly ionized hypersonic flow for reentry configurations:AIAA-2006-3773[R].Reston:AIAA, 2006.
    [2]
    PANDOLFI M, ARINA R, BOTTA N.Nonequilibrium hypersonic flows over corners[J].AIAA Journal, 1991, 29(2):235-241. doi: 10.2514/3.10569
    [3]
    FREDERICKSON K, LEONOV S, NISHIHARA M, et al.Energy conversion in high enthalpy flows and non-equilibrium plasmas[J].Progress in Aerospace Sciences, 2015, 72:49-65. doi: 10.1016/j.paerosci.2014.09.004
    [4]
    AIT-ALI-YAHIA D, HABASHI W G.Finite element adaptive method for hypersonic thermochemical nonequilibrium flows[J].AIAA Journal, 1997, 35(8):1294-1302. doi: 10.2514/2.260
    [5]
    YUMUSAK M, EYI S.Aerothermodynamic shape optimization of hypersonic blunt bodies:AIAA-2013-2693[R].Reston:AIAA, 2013.
    [6]
    BHUTTA B A, LEWIS C H.Three-dimensional hypersonic nonequilibrium flows at large angles of attack[J].Journal of Spacecraft and Rockets, 1989, 26(3):158-166. doi: 10.2514/3.26048
    [7]
    ZOBY E V, LEE K P, GUPTA R N, et al.Viscous shock-layer solutions with nonequilibrium chemistry for hypersonic flows past slender bodies[J].Journal of Spacecraft and Rockets, 1989, 26(4):221-228. doi: 10.2514/3.26058
    [8]
    PEZZELLA G, VOTTA R.Finite rate of chemistry effects on the high altitude aerodynamics of an Apollo-shaped reentry capsule:AIAA-2009-7306[R].Reston:AIAA, 2009.
    [9]
    柳军, 刘伟, 曾明, 等.高超声速三维化学非平衡流场的数值模拟[J].力学学报, 2003, 35(6):730-734. http://youxian.cnki.com.cn/yxdetail.aspx?filename=HKXB20170831005&dbname=CAPJ2015

    LIU J, LIU W, ZENG M, et al.Numerical simulation of 3D hypersonic thermochemical nonequilibrium flow[J].Acta Mechanica Sinica, 2003, 35(6):730-734(in Chinese). http://youxian.cnki.com.cn/yxdetail.aspx?filename=HKXB20170831005&dbname=CAPJ2015
    [10]
    董维中, 丁明松, 高铁锁, 等.热化学非平衡模型和表面温度对气动热计算影响分析[J].空气动力学学报, 2013, 31(6):692-698. http://www.cnki.com.cn/Article/CJFDTOTAL-KQDX201306002.htm

    DONG W Z, DING M S, GAO T S, et al.The influence of thermo-chemical non-equilibrium model and surface temperature on heat transfer rate[J].Acta Aerodynamica Sinica, 2013, 31(6):692-698(in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-KQDX201306002.htm
    [11]
    李康, 胡宗民, 姜宗林.热化学非平衡流动中粘性干扰和化学反应对HB2气动力的影响[J].中国科学:物理学, 力学和天文学, 2015, 45(4):044702. http://www.cnki.com.cn/Article/CJFDTOTAL-JGXK201504008.htm

    LI K, HU Z M, JIANG Z L.Effect of viscosity and chemical reactions on aerodynamic force in chemical nonequilibrium flow[J].Scientia Sinica:Physica, Mechanica & Astronomica, 2015, 45(4):044702(in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-JGXK201504008.htm
    [12]
    周禹, 阎超.高超声速热化学非平衡空间格式的扩展与改进[J].北京航空航天大学学报, 2010, 36(2):193-197. http://bhxb.buaa.edu.cn/CN/abstract/abstract8534.shtml

    ZHOU Y, YAN C.Extension and improvement for schemes in hypersonic thermal and chemical non-equilibrium flows[J]. Journal of Beijing University of Aeronautics and Astronautics, 2010, 36(2):193-197(in Chinese). http://bhxb.buaa.edu.cn/CN/abstract/abstract8534.shtml
    [13]
    周印佳, 孟松鹤, 解维华, 等.高超声速飞行器热环境与结构传热的多场耦合数值研究[J].航空学报, 2016, 37(9):2739-2748. http://youxian.cnki.com.cn/yxdetail.aspx?filename=HKXB20170426001&dbname=CAPJ2015

    ZHOU Y J, MENG S H, XIE W H, et al.Multi-field coupling numerical analysis of aerothermal environment and structural heat transfer of hypersonic vehicles[J].Acta Aeronautica et Astronautica Sinica, 2016, 37(9):2739-2748(in Chinese). http://youxian.cnki.com.cn/yxdetail.aspx?filename=HKXB20170426001&dbname=CAPJ2015
    [14]
    FORD D I, JOHNSON R E.Dependence of rate rate constants on vibrational temperatures:An arrhenius description:AIAA-1988-0461[R].Reston:AIAA, 1988.
    [15]
    GUPTA R N, YOS J M, THOMPSON R A, et al.A review of reaction rates and thermodynamic and transport properties for an 11-species air model for chemical and thermal nonequilibrium calculations to 30000K:NASA RP-1232[R].Washington, D.C.:NASA, 1990.
    [16]
    PARK C.On convergence of computation of chemical reacting flows:AIAA-1985-0247[R].Reston:AIAA, 1985.
    [17]
    PARK C.Problems of rate chemistry in the flight regimes of aeroassisted orbital transfer vehicles:AIAA-1984-1730[R].Reston:AIAA, 1984.
    [18]
    CANDLER G V, MACCORMACK R W.The computation of hypersonic ionized flows in chemical and thermal nonequilibrium:AIAA-1988-0511[R].Reston:AIAA, 1988.
    [19]
    WILKE C R.A viscosity equation for gas mixtures[J].Journal of Chemical Physics, 1950, 18(4):517-519. doi: 10.1063/1.1747673
    [20]
    YOON B, RASMUSSEN M L.Diffusion effects in hypersonic flows with a ternary mixture[J].KSME International Journal, 1999, 13(5):432-442. doi: 10.1007/BF02939331
    [21]
    MACLEAN M, MARINEAU E, PARKER R, et al.Effect of surface catalysis on measured heat transfer in expansion tunnel facility[J].Journal of Spacecraft and Rockets, 2013, 50(2):470-474. doi: 10.2514/1.A32327
    [22]
    HORNUNG H G, WEN C Y.Nonequilibrium dissociationg flow over spheres:AIAA-1995-0091[R].Reston:AIAA, 1995.
    [23]
    STEWART D A, CHEN Y K.Hypersonic convective heat transfer over 140-deg blunt cones in different gases[J].Journal of Spacecraft and Rockets, 1994, 31(5):735-743. doi: 10.2514/3.26506
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(12)  / Tables(2)

    Article Metrics

    Article views(681) PDF downloads(453) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return