Citation: | DUAN Yongsheng, ZHAO Jiguang, CHEN Peng, et al. Analysis method on risk uncertainty based on variable step discrete random set[J]. Journal of Beijing University of Aeronautics and Astronautics, 2018, 44(2): 295-304. doi: 10.13700/j.bh.1001-5965.2017.0047(in Chinese) |
In view of hybrid uncertainty presentation and propagation considering the dissonance and imprecision of information in risk assessment, a hybrid uncertainty analysis method based on variable step discrete random set theory was proposed. All kinds of incomplete and dissonant knowledge was represented with random set framework, a unified hybrid uncertainty propagation model was built using random extension principle, and uncertainty envelope curvesof risk was calculated at the same time. To solve the uncertainty combination problem of dissonant and conflict informations, D-S evidence combination principle was used to merge multisource uncertainty informations. For reducing the tail relative error, a variable step discrete random set presentation strategy of uncertainty variables was proposed, and the analysis procedure of hybrid uncertainty propagation was put forward based on variable step discrete random set theory. In conclusion, a physics and phenomena response model of a mass-spring-damper system was taken to verify the effectiveness and feasibility of the proposed method.
[1] |
GIANG P H. Decision making under uncertainty comprising complete ignorance and probability[J].International Journal of Approximate Reasoning, 2015, 62:27-45. doi: 10.1016/j.ijar.2015.05.001
|
[2] |
SONG S, LU Z, LI W, et al.The uncertainty importance measures of the structural system in view of mixed uncertain variables[J].Fuzzy Sets & Systems, 2014, 243:25-35.
|
[3] |
HELTON J C.Uncertainty and sensitivity analysis in the presence of stochastic and subjective uncertainty[J].Journal of Statistical Computation & Simulation, 2007, 57(1):3-76. doi: 10.1080/00949659708811803
|
[4] |
FERSON S, GINZBURG L R.Different methods are needed to propagate ignorance and variability[J].Reliability Engineering & System Safety, 1996, 54(2):133-144.
|
[5] |
BAUDRIT C. Comparing methods for joint objective and subjective uncertainty propagation with an example in risk assessment[C]//Proceedings of 4th International Symposium on Imprecise Probabilities and Their Application (ISIPTA'05), 2005: 31-40.
|
[6] |
GUYONNET D, BAUDRIT C, DUBOIS D.Postprocessing the hybrid method for addressing uncertainty in risk assessments[J].Journal of Environmental Engineering, 2005, 131(12):1750-1754. doi: 10.1061/(ASCE)0733-9372(2005)131:12(1750)
|
[7] |
WANG C, QIU Z.Hybrid uncertain analysis for steady-state heat conduction with random and interval parameters[J].International Journal of Heat & Mass Transfer, 2015, 80(80):319-328.
|
[8] |
WALLEY P.Statistical reasoning with imprecise probabilities[M].London:Chapman and Hall, 1991:12-231.
|
[9] |
DEMPSTER A P.Upper and lower probabilities induced by a multi-valued mapping[J].Annals of Mathematical Statistics, 1967, 38(2):325-339. doi: 10.1214/aoms/1177698950
|
[10] |
SHAFER G.A mathematical theory of evidence[J].Technometrics, 1978, 20(1):1-242. doi: 10.1080/00401706.1978.10489609
|
[11] |
SMETS P.The normative representation of quantified beliefs by belief functions[J].Artificial Intelligence, 1997, 92(1-2):229-242. doi: 10.1016/S0004-3702(96)00054-9
|
[12] |
ZADEH L A.Fuzzy sets as a basis for a theory of possibility[J].Fuzzy Sets & Systems, 1978, 1(1):3-28.
|
[13] |
BAUDRIT C, COUSO I, DUBOIS D, et al.Joint propagation of probability and possibility in risk analysis:Towards a formal framework[J].International Journal of Approximate Reasoning, 2007, 45(1):82-105. doi: 10.1016/j.ijar.2006.07.001
|
[14] |
AVEN T.On how to define, understand and describe risk[J].Reliability Engineering & System Safety, 2010, 95(6):623-631.
|
[15] |
YAGER R R.Uncertainty representation using fuzzy measures[J].IEEE Transactions on Systems Man & Cybernetics Part B (Cybernetics), 2002, 32(1):13-20.
|
[16] |
FLAGE R, BARALDI P, ZIO E, et al.Probability and possibility-based representations of uncertainty in fault tree analysis[J].Risk Analysis, 2013, 33(1):121-133. doi: 10.1111/risk.2013.33.issue-1
|
[17] |
HELTON J C, JOHNSON J D, OBERKAMPF W L, et al.Sensitivity analysis in conjunction with evidence theory representations of epistemic uncertainty[J].Reliability Engineering & System Safety, 2006, 91(10):1414-1434.
|
[18] |
GUYONNET D, BOURGINE B, DUBOIS D, et al.Hybrid approach for addressing uncertainty in risk assessments[J].Journal of Environmental Engineering, 2003, 129(1):68-78. doi: 10.1061/(ASCE)0733-9372(2003)129:1(68)
|
[19] |
TONON F.Using random set theory to propagate epistemic uncertainty through a mechanical system[J].Reliability Engineering & System Safety, 2004, 85(1):169-181.
|
[20] |
MOLCHANOV I.Theory of random sets[M].Berlin:Springer, 2006:31-210.
|
[21] |
BERNARDINI A.What are the random and fuzzy sets and how to use them for uncertainty modelling in engineering systems[M].Berlin:Springer, 1999:63-125.
|
[22] |
DUBOIS D, PRADE H.Random sets and fuzzy interval analysis[J].Fuzzy Sets & Systems, 1991, 42(1):87-101.
|
[23] |
ALVAREZ D A.On the calculation of the bounds of probability of events using infinite random sets[J].International Journal of Approximate Reasoning, 2006, 43(3):241-267. doi: 10.1016/j.ijar.2006.04.005
|
[24] |
SADIQ R, NAJJARAN H, KLEINER Y.Investigating evidential reasoning for the interpretation of microbial water quality in a distribution network[J].Stochastic Environmental Research and Risk Assessment, 2006, 21(1):63-73. doi: 10.1007/s00477-006-0044-7
|
[25] |
GRABISCH M. Dempster-Shafer and possibility theory[M].Berlin:Springer, 2016:377-437.
|
[26] |
DUBOIS D, FOULLOY L, MAURIS G, et al.Probability-possibility transformations, triangular fuzzy sets, and probabilistic inequalities[J].Reliable Computing, 2004, 10(4):273-297. doi: 10.1023/B:REOM.0000032115.22510.b5
|
[27] |
OUSSALAH M.On the probability/possibility transformations:A comparative analysis[J].International Journal of General System, 2000, 29(5):671-718. doi: 10.1080/03081070008960969
|
[28] |
锁斌, 程永生, 曾超, 等.基于证据理论的异类信息统一表示与建模[J].系统仿真学报, 2013, 25(1):6-11. http://www.cnki.com.cn/Article/CJFDTOTAL-XTFZ201301004.htm
SUO B, CHENG Y S, ZENG C, et al.Unified method of describing and modeling heterogeneous information based on evidence theory[J].Journal of System Simulation, 2013, 25(1):6-11(in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-XTFZ201301004.htm
|
[29] |
FLOREA M C, JOUSSELME A L, GRENIER D, et al.Approximation techniques for the transformation of fuzzy sets into random sets[J].Fuzzy Sets & Systems, 2008, 159(3):270-288.
|
[30] |
KOLMOGOROV A N, FOMIN S.Elements of the theory of functions and functional analysis.Vol.1, Metric and normed spaces[M].Rochester:Graylock Press, 1957:372-389.
|
[31] |
OBERKAMPF W L, HELTON J C, JOSLYN C A, et al.Challenge problems:Uncertainty in system response given uncertain parameters[J].Reliability Engineering & System Safety, 2004, 85(1):11-19.
|
[1] | CAO Ziyu, YANG Jianhua. Nonlinear Optimization-based Online Temporal Calibration of Stereo Camera and IMU in Stereo Visual-Inertial Odometry[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2024.0374 |
[2] | HUANG Mengdie, WANG Lufeng, HUANG Xuxing, LI Shuang. Space target collision risk analysis algorithm based on the square Mahalanobis distance[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2024.0167 |
[3] | LIU H T,LIU X C,HUANG J F,et al. Trajectory optimization of CSTBC UAV relay communication systems with no-fly zone constraints[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(3):729-738 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0351. |
[4] | ZHOU Zi-yan, LI Qiao, SHI Qi-dong. A heuristic constraint conversion scheduling method for time-triggered flows in TSN[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2023.0585 |
[5] | LI Zhonghua, CHEN Chan, WANG Xuejin, CHEN Weiling. Sonar Image Quality Assessment Based on Cross-Network Feature Compensation[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2024.0440 |
[6] | WANG Xiaoyang, REN Hengying, RAO Bo. Aircraft fuel quantity measurement algorithm based on fluid unit mass force[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2024.0108 |
[7] | ZHANG Y,ZHAO X Y,YANG S H,et al. Quality control model of CYGNSS sea surface wind speed retrieval based on ML combination[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(1):20-29 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0220. |
[8] | FENG Chen-xi, ZHANG Di, YE Long. Omnidirectional image quality assessment based on adaptive viewport fusion[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2023.0381 |
[9] | CHANG Ya'nan, WANG Xianzhi, LI Guofei. Prescribed-time Convergent Cooperative Guidance Method with Impact Time and Angle Constraints[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2024.0395 |
[10] | LI M H,JIN S,DU Y. Adversarial attack method based on loss smoothing[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(2):663-670 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0478. |
[11] | GUO Jia, ZHANG Hai-bo, PANG Zhao-jun, DU Zhong-hua. Planning Method for a Multi-debris Removal Mission Considering Space Debris Mass[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2023.0747 |
[12] | HE T Y,DONG Y,ZHOU S M,et al. Performance analysis and optimization of buffering/walking integrated lunar probe[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(8):2547-2556 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0634. |
[13] | GAO Yang, LIN Jiaquan. Optimization of cabin return air ratio based on air quality and compensation loss[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2024.0210 |
[14] | SHI X S,LIN Z Y. Fixed-time distributed convex algorithm over second-order multi-agent systems under bounded disturbances[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(11):2951-2959 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0060. |
[15] | ZHANG Wen-yi, TANG Yu-la-er, WANG Xu-lan, ZHOU Jing, BIAN Ke, LIU Zhi-shuo. Multi-type airport ferry vehicle scheduling with double service time windows[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2023.0579 |
[16] | ZHANG K Q,ZHOU X F,MEN X H,et al. Three-dimensional integrated guidance and control design with fixed-time convergence[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(4):842-852 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0360. |
[17] | LI J,ZHANG R C,PAN C Y,et al. Micro immune optimization algorithm for single objective probabilistic constrained programming[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(3):525-537 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0288. |
[18] | PAN L P,XIE F Y,ZHAO W W,et al. Weak supervision based blind remote sensing image mosaic quality assessment[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(9):2518-2526 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0694. |
[19] | ZHONG D M,GONG H Y,SUN R. An improved STPA for accurate identification of loss scenarios[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(2):311-323 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0226. |
[20] | ZHANG S,SONG T L,JIAO W,et al. Cooperative guidance method with interception time constraint[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(8):1956-1963 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0569. |