Volume 43 Issue 11
Nov.  2017
Turn off MathJax
Article Contents
ZHANG Lifeng. Compressed sensing application to electrical capacitance tomography[J]. Journal of Beijing University of Aeronautics and Astronautics, 2017, 43(11): 2316-2321. doi: 10.13700/j.bh.1001-5965.2017.0052(in Chinese)
Citation: ZHANG Lifeng. Compressed sensing application to electrical capacitance tomography[J]. Journal of Beijing University of Aeronautics and Astronautics, 2017, 43(11): 2316-2321. doi: 10.13700/j.bh.1001-5965.2017.0052(in Chinese)

Compressed sensing application to electrical capacitance tomography

doi: 10.13700/j.bh.1001-5965.2017.0052
Funds:

National Natural Science Foundation of China 51306058

Fundamental Research Funds for the Central Universities 2017MS131

More Information
  • Corresponding author: ZHANG Lifeng, E-mail: hdlfzhang@126.com
  • Received Date: 06 Feb 2017
  • Accepted Date: 24 Apr 2017
  • Publish Date: 20 Nov 2017
  • Based on the sparsity or compressibility of the signal, compressed sensing (CS) theory can achieve high-accuracy reconstruction of the signal by sampling a small amount of data. In this paper, CS theory was used for the image reconstruction of electrical capacitance tomography (ECT). First, using the fast Fourier transformation (FFT) basis, the gray signals of original images can be transformed into the sparse signals. Then, the random observation matrix of ECT system was designed by rearranging the rows of the sensitivity matrix of ECT in a random order. Finally, interior point method, gradient projection for sparse reconstruction (GPSR) algorithm and greedy algorithm which are the three commonly used reconstruction algorithms of CS were used for ECT image reconstruction and the comparison was made with linear back projection algorithm and Landweber iterative algorithm. Simulation results indicate that reconstructed images with higher accuracy can be obtained using the ECT image reconstruction algorithm based on CS theory. Meanwhile, the advantages and disadvantages of the three CS image reconstruction algorithms were analyzed. The advice of selecting which type of image reconstruction algorithm was given.

     

  • loading
  • [1]
    王化祥.电学层析成像[M].北京:科学出版社, 2013:4-20.

    WANG H X.Electrical tomography[M].Beijing:Science Press, 2013:4-20(in Chinese).
    [2]
    赵玉磊, 郭宝龙, 闫允一.电容层析成像技术的研究进展与分析[J].仪器仪表学报, 2012, 33(8):1909-1920. http://d.wanfangdata.com.cn/Periodical/yqyb201208034

    ZHAO Y L, GUO B L, YAN Y Y.Latest development and analysis of electrical capacitance tomography technology[J].Chinese Journal of Scientific Instrument, 2012, 33(8):1909-1920(in Chinese). http://d.wanfangdata.com.cn/Periodical/yqyb201208034
    [3]
    郝魁红, 范文茹, 马敏, 等.平面式电容传感器阵列测量复合材料技术研究[J].传感器与微系统, 2014, 33(2):35-38. http://d.wanfangdata.com.cn/Periodical/cgqjs201402010

    HAO K H, FAN W R, MA M, et al.Research on technology of composite materials measurement by planar capacitance sensor array[J].Transducer and Microsystem Technologies, 2014, 33(2):35-38(in Chinese). http://d.wanfangdata.com.cn/Periodical/cgqjs201402010
    [4]
    马敏, 周苗苗, 李新建, 等.基于ECT技术的航空发动机尾气监测系统设计[J].传感器与微系统, 2015, 34(5):88-91. http://d.wanfangdata.com.cn/Periodical/cgqjs201505026

    MA M, ZHOU M M, LI X J, et al.Design of aero-engine off gas monitoring system based on ECT technology[J].Transducer and Microsystem Technologies, 2015, 34(5):88-91(in Chinese). http://d.wanfangdata.com.cn/Periodical/cgqjs201505026
    [5]
    吴新杰, 黄国兴, 王静文.粒子滤波算法在ECT图像重建中的应用[J].光学精密工程, 2012, 20(8):1826-1830. http://d.wanfangdata.com.cn/Periodical/gxjmgc201208024

    WU X J, HUANG G X, WANG J W.Application of particle filtering algorithm to image reconstruction of ECT[J].Optics and Precision Engineering, 2012, 20(8):1826-1830(in Chinese). http://d.wanfangdata.com.cn/Periodical/gxjmgc201208024
    [6]
    DONOHO D L.Compressed sensing[J].IEEE Transactions on Information Theory, 2006, 52(4):1289-1306. doi: 10.1109/TIT.2006.871582
    [7]
    YU Y, HONG M, LIU F, et al.Compressed sensing MRI using singular value decomposition based sparsity basis[C]//Annual International Conference of the IEEE Engineering in Medicine and Biology Society.Piscataway, NJ:IEEE Press, 2011:5734-5737. http://www.ncbi.nlm.nih.gov/pubmed/21896962
    [8]
    吴新杰, 黄国兴, 王静文.压缩感知在电容层析成像流型辨识中的应用[J].光学精密工程, 2013, 21(4):1062-1068. http://d.wanfangdata.com.cn/Periodical/gxjmgc201304032

    WU X J, HUANG G X, WANG J W.Application of compressed sensing to flow pattern identification of ECT[J].Optics and Precision Engineering, 2013, 21(4):1062-1068(in Chinese). http://d.wanfangdata.com.cn/Periodical/gxjmgc201304032
    [9]
    张玲玲, 王化祥, 范文茹, 等.基于1范数的电阻层析成像图像重建算法[J].天津大学学报, 2011, 44(9):786-790. http://d.wanfangdata.com.cn/Periodical/tianjdxxb201109006

    ZHANG L L, WANG H X, FAN W R, et al.Image reconstruction algorithm based on 1-norm for electrical resistance tomography[J].Journal of Tianjin University, 2011, 44(9):786-790(in Chinese). http://d.wanfangdata.com.cn/Periodical/tianjdxxb201109006
    [10]
    常甜甜, 魏雯婷, 丛伟杰.电阻抗成像的稀疏重建算法[J].西安邮电学院学报, 2013, 18(2):92-96. http://d.wanfangdata.com.cn/Periodical/xaydxyxb201302019

    CHANG T T, WEI W T, CONG W J.Electrical impedance tomography based on sparse reconstruction[J].Journal of Xi'an University of Post and Telecom, 2013, 18(2):92-96(in Chinese). http://d.wanfangdata.com.cn/Periodical/xaydxyxb201302019
    [11]
    王丕涛, 王化祥, 孙犇渊.基于l1范数的电容层析成像图像重建算法[J].中国电机工程学报, 2015, 35(18):4709-4714. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=zgdc201518018&dbname=CJFD&dbcode=CJFQ

    WANG P T, WANG H X, SUN B Y.l1-norm-based image reconstruction algorithm for electrical capacitance tomography[J].Proceedings of the CSEE, 2015, 35(18):4709-4714(in Chinese). http://kns.cnki.net/KCMS/detail/detail.aspx?filename=zgdc201518018&dbname=CJFD&dbcode=CJFQ
    [12]
    YE J M, WANG H G, YANG W Q.Image reconstruction for electrical capacitance tomography based on sparse representation[J].IEEE Transactions on Instrumentation and Measurement, 2015, 64(1):89-102. doi: 10.1109/TIM.2014.2329738
    [13]
    马坚伟, 徐杰, 鲍跃全, 等.压缩感知及其应用:从稀疏约束到低秩约束优化[J].信号处理, 2012, 28(5):609-623. http://d.wanfangdata.com.cn/Periodical/xhcl201205001

    MA J W, XU J, BAO Y Q, et al.Compressive sensing and its application:From sparse to low-rank regularized optimization[J].Signal Processing, 2012, 28(5):609-623(in Chinese). http://d.wanfangdata.com.cn/Periodical/xhcl201205001
    [14]
    CANDES E J, ROMBERG J, TAO T.Robust uncertainty principles:Exact signal reconstruction from highly incomplete frequency information[J].IEEE Transactions on Information Theory, 2006, 52(2):489-509. doi: 10.1109/TIT.2005.862083
    [15]
    BARANIUK R G.Compressive sensing[lecture notes] [J].IEEE Trans on Signal Processing Magazine, 2007, 24(4):118-121. doi: 10.1109/MSP.2007.4286571
    [16]
    陈宇, 高宝庆, 张立新, 等.基于加权奇异值分解截断共轭梯度的电容层析图像重建[J].光学精密工程, 2010, 18(3):701-707. http://d.wanfangdata.com.cn/Periodical/gxjmgc201003026

    CHEN Y, GAO B Q, ZHANG L X, et al.Image reconstruction based on weighted SVD truncation conjugate gradient algorithm for electrical capacitance tomography[J].Optics and Precision Engineering, 2010, 18(3):701-707(in Chinese). http://d.wanfangdata.com.cn/Periodical/gxjmgc201003026
    [17]
    NATARAJAN B K.Sparse approximate solutions to linear systems[J].SIAM Journal on Computing, 1995, 24(2):227-234. doi: 10.1137/S0097539792240406
    [18]
    CHEN S S, DONOHO D L, SAUNDERS M A.Atomic decomposition by basis pursuit[J].SIAM Review, 2001, 43(1):129-159. doi: 10.1137/S003614450037906X
    [19]
    SEUNG J K, KOH K, LUSTIG M, et al.An interior-point method for large-scale l1-regularized least squares[J].IEEE Journal of Selected Topics in Signal Processing, 2007, 1(4):606-617. doi: 10.1109/JSTSP.2007.910971
    [20]
    FIGUEIREDO M A T, NOWAK R D, WRIGHT S J.Gradient projection for sparse reconstruction:Application to compressed sensing and other inverse problem[J].IEEE Journal of Selected Topics in Signal Processing, 2007, 1(4):586-597. doi: 10.1109/JSTSP.2007.910281
    [21]
    TROPP J A, GILBERT A C.Signal recovery from random measurements via orthogonal matching pursuit[J].IEEE Transactions on Information Theory, 2007, 53(12):4655-4666. doi: 10.1109/TIT.2007.909108
    [22]
    BLUMENSATH T, DAVIES E.Iterative hard thresholding for compressed sensing[J].Applied and Computational Harmonic Analysis, 2009, 27(3):265-274. doi: 10.1016/j.acha.2009.04.002
    [23]
    GILBERT A C, INDYK P, IWEN M, et al.Recent developments in the sparse fourier transform:A compressed Fourier transform for big data[J].IEEE Signal Processing Magazine, 2014, 31(5):91-100. doi: 10.1109/MSP.2014.2329131
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(2)  / Tables(5)

    Article Metrics

    Article views(733) PDF downloads(384) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return