Volume 43 Issue 11
Nov.  2017
Turn off MathJax
Article Contents
SHENG Bixia, JI Haifeng, WANG Baoliang, et al. Flow pattern identification method of gas-liquid two-phase flow in ductule based on new C4D[J]. Journal of Beijing University of Aeronautics and Astronautics, 2017, 43(11): 2273-2279. doi: 10.13700/j.bh.1001-5965.2017.0063(in Chinese)
Citation: SHENG Bixia, JI Haifeng, WANG Baoliang, et al. Flow pattern identification method of gas-liquid two-phase flow in ductule based on new C4D[J]. Journal of Beijing University of Aeronautics and Astronautics, 2017, 43(11): 2273-2279. doi: 10.13700/j.bh.1001-5965.2017.0063(in Chinese)

Flow pattern identification method of gas-liquid two-phase flow in ductule based on new C4D

doi: 10.13700/j.bh.1001-5965.2017.0063
Funds:

National Natural Science Foundation of China 51476139

National Natural Science Foundation of China 61573312

More Information
  • Corresponding author: JI Haifeng, E-mail:hfji@iipc.zju.edu.cn
  • Received Date: 15 Feb 2017
  • Accepted Date: 30 Jun 2017
  • Publish Date: 20 Nov 2017
  • Based on the capacitively coupled contactless impedance detection sensor with radial structure, a new method for the flow pattern identification of ductule gas-liquid two-phase flow is proposed by using wavelet packet analysis and K-means algorithm. Firstly, the real part and the imaginary part of the electrical impedance signal, which can reflect the information of the measured fluid, were obtained by using the developed capacitively coupled contactless impedance detection sensor. Then, the real part of signals and the imaginary part of signals were decomposed into 4 sub-bands by wavelet packet decomposition technique, and energy distributions of different frequency ranges were calculated. By combining the mean and variance of the real part and the imaginary part of the signal, the feature vectors was constructed. Finally, using K-means algorithms to do pattern classification, the flow pattern identification model was built. Experiments were carried out in small glass pipe with different inner diameter of 3.5 mm and 5.5 mm. The results show that the developed capacitively coupled contactless impedance detection sensor, which can obtain the information of the fluid flow, is successful, the proposed flow pattern identification method is effective, and the accuracy of flow pattern identification can be above 88%.

     

  • loading
  • [1]
    陈光文, 袁权.微化工技术[J].化工学报, 2003, 54(4):427-439. http://d.wanfangdata.com.cn/Periodical/hgxb200304004

    CHEN G W, YUAN Q.Micro-chemical technology[J].Journal of Chemical Industry and Engineering, 2003, 54(4):427-439(in Chinese). http://d.wanfangdata.com.cn/Periodical/hgxb200304004
    [2]
    袁振伟. 不同重力条件下冷凝器换热特性研究[D]. 南京: 南京航空航天大学, 2010: 1-3.

    YUAN Z W.Research on heat transfer characteristics of condensers under various gravity condition[D].Nanjing:Nanjing University of Aeronautics and Astronautics, 2010:1-3(in Chinese).
    [3]
    GAVRⅡLIDIS A, ANGELI P, CAO E, et al.Technology and applications of microengineered reactors[J].Chemical Engineering Research and Design, 2002, 80(A1):3-30. http://www.sciencedirect.com/science/article/pii/S0263876202721473
    [4]
    KUBAN P, HAUSER P C.Capacitively coupled contactless conductivity detection for microseparation techniques-recent developments[J].Electrophoresis, 2011, 32(1):30-42. doi: 10.1002/elps.201000354
    [5]
    OPEKAR F, TUMA P, STULIK K.Contactless impedance sensors and their application to flow measurements[J].Sensors, 2013, 13(3):2786-2801. doi: 10.3390/s130302786
    [6]
    ZUBER N, FINDLAY J A.Average volumetric concentration in two-phase flow systems[J].American Society of Mechanical Engineers, 1965, 87(4):453-468. http://tribology.asmedigitalcollection.asme.org/article.aspx?articleid=1433615
    [7]
    WANG L, HUANG Z Y, WANG B L, et al.Flow-pattern identification of gas-liquid two-phase flow based on capacitively coupled contactless conductivity detection[J].IEEE Transactions on Instrumentation and Measurement, 2012, 61(5):1466-1475. doi: 10.1109/TIM.2012.2183433
    [8]
    TEWFIK A H, SINHA D, JORGENSEN P.On the optimal choice of a wavelet for signal representation[J].IEEE Transactions on Information Theory, 1992, 38(2):747-765. doi: 10.1109/18.119734
    [9]
    唐向宏.时频分析与小波变换[M].北京:科学出版社, 2008:221-235.

    TANG X H.The time-frequency analysis and wavelet transform[M].Beijing:Science Press, 2008:221-235(in Chinese).
    [10]
    张静远.基于小波变换的特征提取方法分析[J].信号处理, 2000, 16(2):156-162. http://d.wanfangdata.com.cn/Periodical/xhcl200002012

    ZHANG J Y.Analyses of feature extraction methods based on wavelet transform[J].Signal Processing, 2000, 16(2):156-162(in Chinese). http://d.wanfangdata.com.cn/Periodical/xhcl200002012
    [11]
    TAITEL Y, DUKLER A E.A model for predicting flow regime transitions in horizontal and near horizontal gas-liquid flow[J].Chemical Engineering Journal, 1976, 22(1):882-890. doi: 10.1002/aic.690220105/full?scrollTo=references
    [12]
    冀海峰. 小波分析技术在两相流检测中的应用研究[D]. 杭州: 浙江大学, 2002: 29-31. http://cdmd.cnki.com.cn/Article/CDMD-10335-2003051230.htm

    JI H F.Applications of wavelet analysis to the measurement of two-phase flow[D].Hangzhou:Zhejiang University, 2002:29-31(in Chinese). http://cdmd.cnki.com.cn/Article/CDMD-10335-2003051230.htm
    [13]
    MALLAT S G.A theory for multiresolution signal decomposition:The wavelet representation[J].IEEE Transactions on Pattern Analysis and Machine Intelligence, 1989, 11(7):674-693. doi: 10.1109/34.192463
    [14]
    DAUBECHINES I, LAGARIAS J C.Two-scale difference equations I:Existence and global regularity of solutions[J].SIAM Journal on Mathematical Analysis, 1991, 22(5):1388-1410. doi: 10.1137/0522089
    [15]
    黄韬, 刘胜辉, 谭艳娜.基于K-means聚类算法的研究[J].计算机技术与发展, 2011, 21(7):54-62. http://d.wanfangdata.com.cn/Periodical/gdyjs201209043

    HUANG T, LIU S H, TAN Y N.Reaearch of clustering algorithm based on K-maens[J].Computer Technology and Development, 2011, 21(7):54-62(in Chinese). http://d.wanfangdata.com.cn/Periodical/gdyjs201209043
    [16]
    李金宗.模式识别导论[M].北京:高等教育出版社, 1994:316-321.

    LI J Z.An introduction to pattern recognition[M].Beijing:Higher Education Press, 1994:316-321(in Chinese).
    [17]
    LEELA V, PRIYA K S, MANIKANDANR A.Comparative analysis between K-means and Y-means algorithms in Fisher's Iris data sets[J].International Journal of Engineering Science and Technology, 2013, 5(2):245-249.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(5)

    Article Metrics

    Article views(632) PDF downloads(339) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return