Citation: | HUANG Yangyang, WANG Baoliang, JI Haifeng, et al. Data acquisition instrument based on Lamb wave gas sensor[J]. Journal of Beijing University of Aeronautics and Astronautics, 2017, 43(11): 2216-2223. doi: 10.13700/j.bh.1001-5965.2017.0066(in Chinese) |
Lamb wave gas sensor has broad industrial application prospects in gas sensing due to its advantages of high sensitivity, low loss and multi-mode characteristic. However, Lamb wave gas sensor is now still in fundamental academic research period. Experiments concerning the sensor are implemented by network analyzers, which means that gas properties cannot be determined automatically but by manual operation. This limits the applications of Lamb wave gas sensor. In this paper, a specified data acquisition instrument designed for Lamb wave gas sensor was developed. The direct digital synthesizer technology and an embedded system were introduced to obtain the information of the amplitude-frequency and phase-frequency of Lamb wave gas sensor. Maximum peaks of all Lamb wave modes were determined by a multi-peak fast search algorithm. To verify the effectiveness of the data acquisition instrument, frequency sweep experiment and algorithm verification experiment were carried out under different modes. The experimental results show that the data acquisition instrument can accurately acquire the frequency characteristics of Lamb wave gas sensor and the information of multiple peaks in a certain frequency range. Then, combining with the models of Lamb wave gas sensing, it can directly output parameter measurement results, and achieve automatic detection of gas parameters.
[1] |
冯若.超声手册[M].3版.南京:南京大学出版社, 1999:1-3.
FENG R.Ultrasonic handbook[M].3rd ed.Nanjing:Nanjing University Press, 1999:1-3(in Chinese).
|
[2] |
周连群. 利用微型Lamb波传感器研究薄膜-流体的相互作用[D]. 北京: 中国科学院研究生院, 2010: 89.
ZHOU L Q.Study of the membrane-fluid interaction in micro Lamb wave sensor[D].Beijing:Graduate University of Chinese Academy of Sciences, 2010:89(in Chinese).
|
[3] |
林啸鸣. 结合光传感技术的兰姆波检测系统在薄板损伤检测中的应用研究[D]. 南京: 南京航空航天大学, 2012: 3.
LIN X M.Research on damage detection of sheet using Lamb wave combined with optical sensing technology[D].Nanjing:Nanjing University of Aeronautics and Astronautics, 2012:3(in Chinese).
|
[4] |
唐志共, 许晓斌, 杨彦广, 等.高超声速风洞气动力试验技术进展[J].航空学报, 2015, 36(1):86-97.
TANG Z G, XU X B, YANG Y G, et al.Rasearch process on hypersonic wind tunnel aerodynamic testing techniques[J].Acta Aeronautica et Astronautica Sinica, 2015, 36(1):86-97(in Chinese).
|
[5] |
彭治雨, 石义雷, 龚红明, 等.高超声速气动热预测技术及发展趋势[J].航空学报, 2015, 36(1):325-345.
PENG Z Y, SHI Y L, GONG H M, et al.Hypersonic aeroheating prediction technique and its trend of development[J].Acta Aeronautica et Astronautica Sinica, 2015, 36(1):325-345(in Chinese).
|
[6] |
刘虹. 网络分析仪频率合成技术的研究[D]. 成都: 电子科技大学, 2006: 1-2.
LIU H.Research on frequency synthesis technique of network analyzer[D].Chengdu:University of Electronic Science and Technology of China, 2006:1-2(in Chinese).
|
[7] |
高泽溪, 高成.直接数字频率合成器(DDS)及其性能分析[J].北京航空航天大学学报, 1998, 24(5):615-618.
GAO Z X, GAO C.Direct digital synthesizer (DDS) and performance analysis[J].Journal of Beijing University of Aeronautics and Astronautics, 1998, 24(5):615-618(in Chinese).
|
[8] |
江进, 李锋, 黎海文, 等.基于DDS声波生物传感器信号探测系统的研究[J].传感器技术与传感器, 2009(5):13-15.
JIANG J, LI F, LI H W, et al.Study of acoustic biosensor signal detection system based on DDS[J].Instrument Technique and Sensor, 2009(5):13-15(in Chinese).
|
[9] |
夏前亮, 陈智军, 陈涛.基于扫频技术的乐甫波器件测试系统[J].测试技术学报, 2012, 26(3):185-190.
XIA Q L, CHEN Z J, CHEN T, et al.Measurement system of love wave device based on frequency scanning technology[J].Journal of Test and Measurement Technology, 2012, 26(3):185-190(in Chinese).
|
[10] |
ZHOU L Q, MANCEAU J F, BASTIEN F.Influence of gases on Lamb waves propagations in resonator[J].Applied Physics Letters, 2009, 95(22):223505. doi: 10.1063/1.3268785
|
[11] |
ZHOU L Q, MANCEAU J F, BASTIEN F.Interaction between gas flow and a Lamb waves based microsensor[J].Sensors and Actuators A:Physical, 2012, 181:1-5. doi: 10.1016/j.sna.2012.04.013
|
[12] |
李高斌. 基于ARM的频率特性分析仪的设计[D]. 武汉: 武汉科技大学, 2011: 1-2.
LI G B.The design of frequency response analyzer based on ARM[D].Wuhan:Wuhan University of Technology, 2011:1-2(in Chinese).
|
[13] |
马文瑞. 基于DSP的射频扫频仪设计[D]. 西安: 西安电子科技大学, 2011: 1-2.
MA W R.Design of radio frequency sweep instrument based on DSP[D].Xi'an:Xidian University, 2011:1-2(in Chinese).
|
[14] |
ANALOG D I.AD9910 datasheet[EB/OL].[2016-12-01].
|
[15] |
ANALOG D I.AD8302:LF-2.7 GHz RF/IF gain and phase detector datasheet[EB/OL].[2016-12-01].
|
[16] |
胡毓达.优选法的对称试验最优性[J].自然杂志, 2014, 36(4):285-291.
HU Y D.The optimality of symmetry trial on optimum seeking methods[J].Chinese Journal of Nature, 2014, 36(4):285-291(in Chinese).
|
[1] | LI F,LI Z H,CHEN A G. Boltzmann-Rykov model equation gas-kinetic unified algorithm and nozzle flow[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(2):553-562 (in Chinese). doi: 10.13700/j.bh.1001-5965.2023.0054. |
[2] | LIU He, WEI Cheng, ZHANG Zexu, SUN Bo, HU Zihang. Spacecraft Anomaly Detection Based on Filtered Autoencoder Envelope Analysis[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2024.0832 |
[3] | NIU G C,TIAN Y B,XIONG Y. Obstacle detection and tracking method based on millimeter wave radar and LiDAR[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(5):1481-1490 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0541. |
[4] | ZHONG J,LUO C,ZHANG H,et al. Flight data anomaly detection based on correlation parameter selection[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(5):1738-1745 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0574. |
[5] | LI Ruiqi, HUANG Yongqiang, LIU Liang, YUE Meng. Data Security Transmission Protection Mechanism for L-band Digital Aeronautical Communications System Based on Domestic Cryptographic Algorithms[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2023.0656 |
[6] | ZHANG Dongping, WANG Mengting, LU Zhanhong, REN Ye, LIU Zhiyong, YANG Li. Intrusion Detection in Industrial Control Systems Based on Data Augmentation by Large Time Series Models[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2024.0755 |
[7] | WEN Xinzhe, CHEN Yanxiang, ZHENG Shengyou, LI Guoping. Construction of a fake sound effect dataset and investigation on the detection methods[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2024.0460 |
[8] | LI R Z,JIANG B,YU Z Q,et al. Data-driven fault detection and diagnosis for UAV swarms[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(5):1586-1592 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0441. |
[9] | ZHANG Zhangyong, SUN Yuhua, CHEN Daming, GUO Zhihao. A method for suppressing conducted interference in parallel drive systems based on modulated wave phase shift[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2024.0342 |
[10] | ZHOU N,ZHANG S L,ZHANG C. Discrete sparrow search algorithm incorporating rough data-deduction for solving hybrid flow-shop scheduling problems[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(2):398-408 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0424. |
[11] | ZHANG Y P,FU Q,SHAN G L,et al. Scheduling method for multi-sensor cooperative area search and target tracking[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(3):850-860 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0277. |
[12] | ZHANG Y M,JIN G H,SHI Y,et al. Hysteresis characteristics of pneumatic artificial muscle based on improved Maxwell model[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(12):3686-3695 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0917. |
[13] | ZHONG J C,XU H J,WEI X L,et al. Detection of debonding defect in CFRP laminates using infrared pulse thermal wave tomography[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(7):1847-1856 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0555. |
[14] | LIN Y H,LI C B. Multidimensional degradation data generation method based on variational autoencoder[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(10):2617-2627 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0760. |
[15] | XIONG Liang, ZHANG Rui, XU Bin, HUANG Qiao-ping. Research on Evolution Mechanism of Configuration and Parameter Solution Model of Air Data Sensing System for Aircraft[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2023.0339 |
[16] | ZHANG J B,XU X B,WANG X,et al. Data processing technology of balanced dynamic characteristics based on wavelet reconstruction[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(6):1362-1371 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0441. |
[17] | LIANG Jin-ze, PAN Tian-yu, ZHENG Meng-zong, PENG Lian-song, CAO Meng-da. Model design and aerodynamic characteristics analysis of variable-amplitude flapping wing aircraft[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2023.0271 |
[18] | JIANG D N,BA Y J,LI W. Sensor fault detection and data reconstruction method of power supply vehicle[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(7):1583-1592 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0501. |
[19] | LEI Yao-lin, DING Wen-rui, LUO Yi-zhe, WANG Yu-feng, LIU Si-qi, ZHANG Zhi-lan. Trajectory planning and resource allocation methods in UAV data collection missions[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2023.0531 |
[20] | WU Xin, WU Youli, NIU Deqing, CAI Yuxuan, XU Yang, CHEN Bian. Application of data cube association mining in infrared anti-jamming[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(11): 2304-2313. doi: 10.13700/j.bh.1001-5965.2021.0096 |