Volume 44 Issue 2
Feb.  2018
Turn off MathJax
Article Contents
XIAO Hongliang, LI Huacong, LI Jia, et al. Modeling method of variable cycle engine based on QPSO hybrid algorithm[J]. Journal of Beijing University of Aeronautics and Astronautics, 2018, 44(2): 305-315. doi: 10.13700/j.bh.1001-5965.2017.0078(in Chinese)
Citation: XIAO Hongliang, LI Huacong, LI Jia, et al. Modeling method of variable cycle engine based on QPSO hybrid algorithm[J]. Journal of Beijing University of Aeronautics and Astronautics, 2018, 44(2): 305-315. doi: 10.13700/j.bh.1001-5965.2017.0078(in Chinese)

Modeling method of variable cycle engine based on QPSO hybrid algorithm

doi: 10.13700/j.bh.1001-5965.2017.0078
Funds:

National Natural Science Foundation of China 51506176

Aeronautical Science Foundation of China 6141B090302

the Fundamental Research Funds for the Central Universities G2017KY0003

More Information
  • Corresponding author: LI Huacong, E-mail:lihuacong@nwpu.edu.cn
  • Received Date: 21 Feb 2017
  • Accepted Date: 05 Jun 2017
  • Publish Date: 20 Feb 2018
  • A new hybrid algorithm which is based on quantum particle swarm optimization (QPSO) algorithm and Broyden quasi-Newton algorithm was proposed to reduce the effect of initial value selection on convergence speed and accuracy in solving the variable cycle engine (VCE) model. Firstly, based on the analysis of the VCE geometrical characteristics and the analysis of the steady-state characteristics of the external duct through backpropagation(BP) neural network method, a component model was established which can reflect variable geometry property and mode switching and other states of the VCE. Secondly, based on the model performance calculation, a QPSO based Broyden quasi-Newton hybrid algorithm was used to solve the VCE model cooperating equations, which improved the convergence and calculation efficiency of the hybrid algorithm by introducing the divergence coefficient to combine the two single algorithms. The effectiveness, efficiency and accuracy of the algorithm were verified by the simulation of high-order nonlinear equations. Finally, the steady state and dynamic simulation of VCE component model were carried out. The results of VCE model show that, compared with the results of GasTurb performance calculation, the trends of velocity characteristics and altitude characteristics are basically the same with those of GasTurb, the error between VCE model and GasTurb is less than 2%. The hybrid algorithm based on QPSO and Broyden quasi-Newton algorithm can solve the VCE model efficiently and quickly. The established VCE model can be used for performance simulation and analysis.

     

  • loading
  • [1]
    姚艳玲, 黄春峰.先进变循环发动机技术研究[J].航空制造技术, 2012(23):106-109. http://d.wanfangdata.com.cn/Periodical_hkdlxb201304033.aspx

    YAO Y L, HUANG C F.Research on advanced variable cycle engine[J].Aeronautical Manufacturing Technology, 2012(23):106-109(in Chinese). http://d.wanfangdata.com.cn/Periodical_hkdlxb201304033.aspx
    [2]
    樊思齐.航空发动机控制[M].西安:西北工业大学出版社, 2008:65-68.

    FAN S Q.Aeroengine control[M].Xi'an:Northwesten Polytechnical University Press, 2008:65-68(in Chinese).
    [3]
    KREBS J N, ALLAN R D. Supersonic propulsion-1970 to 1977: AIAA-1977-0832[R]. Reston: AIAA, 1977.
    [4]
    ALLAN R D. General electric company variable cycle engine technology demonstrator program: AIAA-1979-1311[R]. Reston: AIAA, 1979.
    [5]
    FRENCH M W, ALLEN G L. NASA VCE test bed engine aerodynamic performance characteristics and test results: AIAA-1981-1594[R]. Reston: AIAA, 1981.
    [6]
    US Navy instigates variable-cycle engine programme[EB/OL]. [2017-02-21]. Jane's Defence Weekly, 2011.
    [7]
    SIMMONS R J. Design and control of a variable geometry turbofan with an independently modulated third stream[D]. Columbus: The Ohio State University, 2009.
    [8]
    JOHN R. Real-time simulation of F100-PW-100 turbofan engine using the hybrid computer: NASA TMX-3261[R]. Washington, D. C. : NASA, 1975.
    [9]
    刘增文, 王占学, 黄红超, 等.变循环发动机性能数值模拟[J].航空动力学报, 2010, 25(6):1310-1315. http://epub.cqvip.com/pay.aspx?id=1000000246015

    LIU Z W, WANG Z X, HUANG H C, et al.Numerical simulation on performance of variable cycle engines[J].Journal of Aerospace Power, 2010, 25(6):1310-1315(in Chinese). http://epub.cqvip.com/pay.aspx?id=1000000246015
    [10]
    苟学中, 周文祥, 黄金泉.变循环发动机部件级建模技术[J].航空动力学报, 2013, 28(1):104-111. http://www.wenkuxiazai.com/doc/85f4b00ab52acfc789ebc938-2.html

    GOU X Z, ZHOU W X, HUANG J Q.Component-level modeling technology for variable cycle engine[J].Journal of Aerospace Power, 2013, 28(1):104-111(in Chinese). http://www.wenkuxiazai.com/doc/85f4b00ab52acfc789ebc938-2.html
    [11]
    王元, 李秋红, 黄向华.变循环发动机建模技术研究[J].航空动力学报, 2013, 28(4):954-960. http://d.wanfangdata.com.cn/Periodical_hkdlxb201304033.aspx

    WANG Y, LI Q H, HUANG X H.Research of variable cycle engine modeling techniques[J].Journal of Aerospace Power, 2013, 28(4):954-960(in Chinese). http://d.wanfangdata.com.cn/Periodical_hkdlxb201304033.aspx
    [12]
    苏三买, 廉小纯.遗传算法在航空发动机非线性数学模型中的应用[J].推进技术, 2004, 25(3):237-240. http://industry.wanfangdata.com.cn/dl/Detail/Thesis?id=Thesis_Y480404

    SU S M, LIAN X C.Application of genetic algorithm in aero-engine nonlinear mathematical models[J].Journal of Propulsion Technology, 2004, 25(3):237-240(in Chinese). http://industry.wanfangdata.com.cn/dl/Detail/Thesis?id=Thesis_Y480404
    [13]
    苏三买, 陈永琴.基于混合遗传算法的航空发动机数学模型解法[J].推进技术, 2007, 28(6):661-664. http://www.cqvip.com/QK/97609X/200706/26071467.html

    SU S M, CHEN Y Q.Hybrid genetic algorithm in solving aero-engine nonlinear mathematical model[J].Journal of Propulsion Technology, 2007, 28(6):661-664(in Chinese). http://www.cqvip.com/QK/97609X/200706/26071467.html
    [14]
    杨伟, 冯雷星, 彭靖波, 等.求解航空发动机数学模型的混合智能方法[J].推进技术, 2008, 29(5):614-616. http://d.old.wanfangdata.com.cn/Periodical/tjjs200805019

    YANG W, FENG L X, PENG J B, et al.An intelligent algorithm for solution of nonlinear mathematical model for aeroengine[J].Journal of Propulsion Technology, 2008, 29(5):614-616(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/tjjs200805019
    [15]
    骆广琦, 刘波, 宋頔源.基于混合粒子群算法的航空发动机数学模型解法[J].燃气涡轮试验与研究, 2011, 24(2):5-8. http://d.wanfangdata.com.cn/Periodical_rqwlsyyyj201102002.aspx

    LUO G Q, LIU B, SONG D Y.Hybrid particle swarm optimization in solving aero-engine nonlinear mathematical model[J].Gas Turbine Experiment and Research, 2011, 24(2):5-8(in Chinese). http://d.wanfangdata.com.cn/Periodical_rqwlsyyyj201102002.aspx
    [16]
    尹大伟. 航空发动机模型求解算法及性能寻优控制中的参数估计研究[D]. 长沙: 国防科技大学, 2011.

    YIN D W. Algorithms for solving aero-engine nonlinear mathematical model and parameter estimation in performance-seeking control[D]. Changsha: National University of Defense Technology, 2011(in Chinese).
    [17]
    白洋, 段黎明, 柳林, 等.基于改进的混合粒子群算法的变循环发动机模型求解[J].推进技术, 2014, 35(12):1694-1700. http://www.cqvip.com/QK/97609X/201412/84747483504849524950484953.html

    BAI Y, DUAN L M, LIU L, at al.Solving variable cycle engine model based on improved hybrid particle swarm optimization[J].Journal of Propulsion Technology, 2014, 35(12):1694-1700(in Chinese). http://www.cqvip.com/QK/97609X/201412/84747483504849524950484953.html
    [18]
    KURZKE J.GasTurb 12 user's manual:Design and off-design performance of gas turbines[M].Friedrichshafen:MTU Company, 2012:79-81.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(12)  / Tables(1)

    Article Metrics

    Article views(778) PDF downloads(603) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return