Chen Haibing, Zhang Shuguang, Fang Zhenpinget al. Design of nonlinear flight control law based on bifurcation tailoring[J]. Journal of Beijing University of Aeronautics and Astronautics, 2008, 34(10): 1143-1146. (in Chinese)
Citation: ZHAO Yao, LI Pu, LIU Juan, et al. Finite-time sliding mode control based 3D guidance law with impact angle constraints[J]. Journal of Beijing University of Aeronautics and Astronautics, 2018, 44(2): 273-279. doi: 10.13700/j.bh.1001-5965.2017.0087(in Chinese)

Finite-time sliding mode control based 3D guidance law with impact angle constraints

doi: 10.13700/j.bh.1001-5965.2017.0087
More Information
  • Corresponding author: ZHAO Yao, E-mail:shine3y9r@126.com
  • Received Date: 21 Feb 2017
  • Accepted Date: 05 May 2017
  • Publish Date: 20 Feb 2018
  • To deal with the guidance problem of missile for intercepting ground fixed targets, a three-dimensional finite-time sliding mode control based guidance law is proposed in this paper. It is proved by the Lyapunov theory that the guidance law can steer the missile to intercept target with the desired impact angles in both azimuth and elevation. The guidance law has four advantages. First, model decoupling or model linearization is not needed in this work; second, the impact angles in both longitudinal and horizontal can be controled; third, the guidance command can be analytically derived; fourth, the closed-loop system is insensitive to external disturbance as well as parameter uncertainty. The simulation results show that high terminal accuracy and good robustness can be achieved by the proposed guidance law.

     

  • [1]
    KIM M, GRIDER K V.Terminal guidance for impact attitude angle constrained flight trajectories[J].IEEE Transactions on Aerospace and Electronic Systems, 1973, 9(6):852-859.
    [2]
    SIOURIS G M.Missile guidance and control systems[M].Berlin:Springer, 2003.
    [3]
    ZARCHAN P.Tactical and strategic missile guidance[M].4th ed.Reston:AIAA, 2002.
    [4]
    GHAW S N, GHOSE D.Pure proportional navigation against time-varying target maneuvers[J].IEEE Transactions on Aerospace and Electronic Systems, 1996, 32(3):1336-1346.
    [5]
    KIM B S, LEE J G, HAN H S.Biased PNG law for impact with angular constraint[J].IEEE Transactions on Aerospace and Electronic Systems, 1998, 34(1):277-288. doi: 10.1109/7.640285
    [6]
    JEONG S K, CHO S J, KIM E G. Angle constraint biased PNG[C]//Proceedings of 5th Asian Control Conference. Piscataway, NJ: IEEE Press, 2004: 1849-1854.
    [7]
    LU P, DOMAN D B, SCHIERMAN J D.Adaptive terminal guidance for hypervelocity impact in specified direction[J].Journal of Guidance, Control, and Dynamics, 2006, 29(2):269-278. doi: 10.2514/1.14367
    [8]
    RATNOO A, GHOSE D.Impact angle constrained interception of stationary targets[J].Journal of Guidance, Control, and Dynamics, 2008, 31(6):1816-1821.
    [9]
    RATNOO A, GHOSE D.Impact angle constrained guidance against nonstationary nonmaneuvering targets[J].Journal of Guidance, Control, and Dynamics, 2010, 33(1):269-275. doi: 10.2514/1.45026
    [10]
    ZHOU D, MU C D, XU W L.Adaptive sliding-mode guidance of a homing missile[J].Journal of Guidance, Control, and Dynamics, 1999, 22(4):589-594. doi: 10.2514/2.4421
    [11]
    SHIMA T.Intercept-angle guidance[J].Journal of Guidance, Control, and Dynamics, 2011, 34(2):484-492. doi: 10.2514/1.51026
    [12]
    TAUB I, SHIMA T.Intercept angle missile guidance under time varying acceleration bounds[J].Journal of Guidance, Control, and Dynamics, 2013, 36(3):686-699. doi: 10.2514/1.59139
    [13]
    HOU M Z, DUAN G R.Integrated guidance and control of homing missiles against ground fixed targets[J].Chinese Journal of Aeronautics, 2008, 21(2):162-168. doi: 10.1016/S1000-9361(08)60021-7
    [14]
    彭双春, 潘亮, 韩大鹏, 等.一种新型三维制导律设计的非线性方法[J].航空学报, 2010, 31(10):2018-2025.

    PENG S C, PAN L, HAN D P, et al.A new 3D guidance law based on nonlinear method[J].Acta Aeronautica et Astronautica Sinca, 2010, 31(10):2018-2025(in Chinese).
    [15]
    佘文学, 周凤岐.三维非线性变结构寻的制导律[J].宇航学报, 2004, 25(6):681-685.

    SHE W X, ZHOU F Q.High precision 3-D nonlinear variable structure guidance law for homing missile[J].Journal of Astronautics, 2004, 25(6):681-685(in Chinese).
    [16]
    OZA H B, PADHI R.Impact-angle-constrained suboptimal model predictive static programming guidance of air-to-ground missiles[J].Journal of Guidance, Control, and Dynamics, 2012, 35(1):153-164. doi: 10.2514/1.53647
    [17]
    RATNOO A, GHOSE D.State-dependent Riccati-equation-based guidance law for impact-angle-constrained trajectories[J].Journal of Guidance, Control, and Dynamics, 2009, 32(1):320-325. doi: 10.2514/1.37876
    [18]
    IMADO F, KURODA T, TAHK M J. A new missile guidance algorithm against a maneuvering target[C]//Proceedings of the AIAA Guidance, Navigation, and Control Conference. Reston: AIAA, 1998: 145-153.
  • Relative Articles

    [1]ZHEN Chong, FENG Xinyu. Carrier-based aircraft direct lift control based on sliding mode observer and non-linear dynamic inversion technology[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2024.0373
    [2]TAN C,YU P,LI B,et al. Pressure cascade control of brake-by-wire unit based on direct drive pump-valve cooperative[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(4):1163-1171 (in Chinese). doi: 10.13700/j.bh.1001-5965.2023.0216.
    [3]XU M,LI Y,GAO J,et al. Design of aircraft anti-skid braking system integral sliding mode control system based on novel reaching law[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(4):1107-1116 (in Chinese). doi: 10.13700/j.bh.1001-5965.2023.0185.
    [4]LI T,ZHAO Y Q,XU T,et al. Stability control of vehicles powered by non-pneumatic wheels based on robust optimal sliding mode[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(4):1342-1351 (in Chinese). doi: 10.13700/j.bh.1001-5965.2023.0238.
    [5]FAN Zhi-wen, SONG Xiao-juan, LU: Shu-feng, YUE Bao-zeng. Fixed-time sliding mode fault-tolerant control for liquid-filled spacecraft[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2023.0736
    [6]XIE M J,DUAN J Q,MA W R,et al. Sliding mode control for electric braking systems of aircraft based on prescribed performance[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(1):260-267 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0229.
    [7]LI H H,HAN Y H. Robust anti-swing technology for helicopter slung load based on wave control[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(5):1629-1638 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0326.
    [8]MA Z W,BAI H,CHEN H B,et al. RBF neural network robust adaptive control of quadrotor aircraft[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(5):1620-1628 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0595.
    [9]YANG J X,TANG S J,LI L,et al. Remaining useful life prediction based on implicit nonlinear Wiener degradation process[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(1):328-340 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0243.
    [10]ZHANG Yonghua, WANG Zheng, WANG Shiyu, BAI Yunfei, QIU Likuan. Robust Guidance Method for Reusable Rocket Landing Phase based on UMPSP[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2024.0491
    [11]YANG R R,ZHANG L,ZHAO J L,et al. Nonlinear variable damping integral sliding mode control for electro-hydrostatic actuator[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(1):163-172 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0252.
    [12]SUN X M,MA X,LIU Y,et al. Adaptive sliding mode region reaching control for uncertain nonlinear systems[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(8):2482-2491 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0647.
    [13]LIU W,YAN S,WANG X B,et al. Consensus control of multi-agent systems with uncertain communication networks[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(5):1463-1473 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0518.
    [14]LIU H,HUANG S,TU H Y. Quadrotor sliding mode control based on predefined time[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(5):1665-1674 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0481.
    [15]REN Hao-yuan, CHENG Tao, ZHANG Cheng, CAI Yi-peng, LIU Fei, ZHANG Wei-qun. A flutter suppression method for multi-freepalys folding fin based on sliding mode control and fin shaft drive[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2023.0466
    [16]TAN Cao, HAO Ming-ji, LU Jia-yu, WEI Qing-kun, REN Hao-xin. Improved PMSM Fast Super-twisted Sliding Mode Position Tracking Control[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2023.0612
    [17]TANG Z Y,MA F Y,PEI Z C. Improved PSO-RBF neural network adaptive sliding mode control for quadrotor systems[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(7):1563-1572 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0477.
    [18]HE J J,YUAN C Q,GONG S P,et al. Sliding mode control for formation flying near libration points using hybrid propulsion[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(5):1222-1230 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0420.
    [19]DENG B H,XU J F. Active disturbance rejection control of attitude of compound unmanned helicopter[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(11):3100-3107 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0788.
    [20]WANG C Y,YANG L M,LI Y H. A mapping leader formation control strategy for multiple mobile robots based on two-stage sliding mode control[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(11):3108-3114 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0792.
  • Cited by

    Periodical cited type(5)

    1. 祝雯生,吕先敬,侯振乾,张顺家,毕鹏,仲康. 基于组合优化算法的空面导弹全空域弹道优化. 北京航空航天大学学报. 2023(02): 344-352 . 本站查看
    2. 王鹏,陈万春,陈中原. 视场约束下攻击角度及时间控制三维协同制导. 战术导弹技术. 2022(04): 30-40 .
    3. 华艺欣,邹泉,田海铭. 软式自主空中加油控制策略仿真. 北京航空航天大学学报. 2021(02): 262-270 . 本站查看
    4. 史绍琨,赵久奋,崇阳,杨奇松,尤浩. 带落角约束的新型二阶滑模三维制导律. 北京航空航天大学学报. 2019(03): 614-623 . 本站查看
    5. 姜尚,田福庆,孙世岩,梁伟阁. 考虑落角约束与驾驶仪特性的自适应径向基空间末制导律. 国防科技大学学报. 2019(06): 100-110 .

    Other cited types(4)

  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(3)

    Article Metrics

    Article views(1014) PDF downloads(232) Cited by(9)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return