Volume 44 Issue 2
Feb.  2018
Turn off MathJax
Article Contents
LI Lin, XUE Zheng, FAN Yuet al. Efficiency of twist deformation of composite plate actuated by MFC[J]. Journal of Beijing University of Aeronautics and Astronautics, 2018, 44(2): 229-240. doi: 10.13700/j.bh.1001-5965.2017.0107(in Chinese)
Citation: LI Lin, XUE Zheng, FAN Yuet al. Efficiency of twist deformation of composite plate actuated by MFC[J]. Journal of Beijing University of Aeronautics and Astronautics, 2018, 44(2): 229-240. doi: 10.13700/j.bh.1001-5965.2017.0107(in Chinese)

Efficiency of twist deformation of composite plate actuated by MFC

doi: 10.13700/j.bh.1001-5965.2017.0107
Funds:

National Natural Science Foundation of China 51675022

More Information
  • Corresponding author: FAN Yu, E-mail:fanyu04@buaa.edu.cn
  • Received Date: 28 Feb 2017
  • Accepted Date: 09 Jun 2017
  • Publish Date: 20 Feb 2018
  • More and more composite structures containing active materials are applied to adaptive structures. The integration of active materials in structures has brought new characteristics but made the design more complicated. In this paper, the deformation of the active composite plate actuated by the macro fiber material (MFC) is studied. The purpose is to obtain the relationship between the twist deformation of the actuated composite plate and the MFC fiber laying and the actuation mode. Based on the elastic mechanics theory, the relationship between the strain of active fiber actuated by voltage and induced internal force and deformation of the composite plate is established. The solution of the problem is conducted using Ritz's method and taking the displacement function as a linear combination of the two-dimension beam-modes. The solving equation of the displacement field actuated by MFC is derived, and the analytical result is verified by the experiment. In order to evaluate the actuation effect of MFC composite plate under different conditions and to consider the bending-torsion coupling characteristics of composite plate deformation, the concept and the calculation of actuation efficiency of an active composite plate are proposed, which is based on the definition of equivalent bending and twist angle of section. Then the evolution of the actuation efficiency with the laying angle of MFC and the mode of input voltage is analyzed. Corresponding to different constraint conditions, the laying of piezoelectric fiber-direction and the selection of actuation-mode are given based on the obtained analysis results.

     

  • loading
  • [1]
    BARBARINO S, BILGEN O, AJAJ R M, et al.A review of morphing aircraft[J].Journal of Intelligent Material Systems & Structures, 2011, 22(9):823-877.
    [2]
    SOFLA A Y N, MEGUID S A, TAN K T, et al.Shape morphing of aircraft wing:Status and challenges[J].Materials & Design, 2010, 31(3):1284-1292. https://www.sciencedirect.com/science/article/pii/S0261306909004968
    [3]
    冷劲松, 孙健, 刘彦菊.智能材料和结构在变体飞行器上的应用现状与前景展望[J].航空学报, 2014, 35(1): 29-45. http://www.doc88.com/p-9651832278792.html

    LENG J S, SUN J, LIU Y J.Application status and future prospect of smart materials and structures in morphing aircraft[J].Acta Aeronautica et Astronautica Sinica, 2014, 35(1): 29-45 (in Chinese). http://www.doc88.com/p-9651832278792.html
    [4]
    MANZO J, GARCIA E, WICKENHEISER A, et al.Design of a shape-memory alloy actuated macro-scale morphing aircraft mechanism[J].Proceedings of SPIE-the International Society for Optical Engineering, 2005, 5764:232-240. doi: 10.1117/12.601372.full
    [5]
    MANZO J, GARCIA E.Demonstration of an in situ morphing hyperelliptical cambered span wing mechanism[J].Smart Materials & Structures, 2010, 19(19):328-335.
    [6]
    SHELTON A, TOMAR A, PRASAD J, et al.Active multiple winglets for improved unmanned-aerial-vehicle performance[J].Journal of Aircraft, 2015, 43(43):110-116. http://gatech.academia.edu/NarayananKomerath
    [7]
    BARTLEY-CHO J D, WANG D P, MARTIN C A, et al.Development of high-rate, adaptive trailing edge control surface for the smart wing phase 2 wind tunnel model[J].Journal of Intelligent Material Systems & Structures, 2004, 15(4):279-291. doi: 10.1177/1045389X04042798
    [8]
    BARRETT R M.Design, fabrication, and testing of a new twist-active wing design[J].Proceedings of SPIE-the International Society for Optical Engineering, 1998, 3329. doi: 10.1117/12.316919.full
    [9]
    柴双双, 张卫平, 柯希俊, 等.仿昆扑翼微飞行器中压电驱动器的性能参数分析[J].上海交通大学学报, 2015, 49(5):663-668. http://d.old.wanfangdata.com.cn/Periodical/shjtdxxb201505015

    CHAI S S, ZHANG W P, KE X J, et al.Piezoelectric actuators for insect-like flapping-wing micro aerial vehicle[J].Journal of Shanghai Jiaotong University, 2015, 49(5):663-668(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/shjtdxxb201505015
    [10]
    程春晓, 李道春, 向锦武, 等.柔性后缘可变形机翼气动特性分析[J].北京航空航天大学学报, 2016, 42(2):360-367. http://bhxb.buaa.edu.cn/CN/abstract/abstract13786.shtml

    CHENG C X, LI D C, XIANG J W, et al.Analysis on aerodynamic characteristics of morphing wing with flexible trailing edge[J].Journal of Beijing University of Aeronautics and Astronautics, 2016, 42(2):360-367(in Chinese). http://bhxb.buaa.edu.cn/CN/abstract/abstract13786.shtml
    [11]
    LIN X J, ZHOU K C, ZHANG X Y.Development, modeling and application of piezoelectric fiber composites[J].Transactions of Nonferrous Metals Society of China, 2013, 23(1):98-107. doi: 10.1016/S1003-6326(13)62435-8
    [12]
    COBB R, BROWNING J, CANFIELD R, et al. F-16 ventral fin buffet alleviation using piezoelectric actuators[C]//AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Reston: AIAA, 2009.
    [13]
    OHANIAN O, HICKLING C, STILTNER B, et al. Piezoelectric morphing versus servo-actuated MAV control surfaces[C]//AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Resson: AIAA, 2012: 23-26.
    [14]
    LIU S, TONG L, LIN Z.Simultaneous optimization of control parameters and configurations of PZT actuators for morphing structural shapes[J].Finite Elements in Analysis & Design, 2008, 44(6-7):417-424. https://dl.acm.org/citation.cfm?id=1352932.1353092
    [15]
    LUO Q, TONG L.Design and testing for shape control of piezoelectric structures using topology optimization[J].Engineering Structures, 2015, 97:90-104. doi: 10.1016/j.engstruct.2015.04.006
    [16]
    QUAN N, TONG L.Shape control of smart composite plate with non-rectangular piezoelectric actuators[J].Composite Structures, 2004, 66(1-4):207-214. doi: 10.1016/j.compstruct.2004.04.039
    [17]
    MUKHERJEE A, JOSHI S.Piezoelectric sensor and actuator spatial design for shape control of piezolaminated plates[J].AIAA Journal, 2015, 40(6):1204-1210.
    [18]
    BÜTER A, BREITBACH E.Adaptive blade twist-calculations and experimental results[J].Aerospace Science & Technology, 1999, 4(5):309-319. https://www.sciencedirect.com/science/article/pii/S1270963800001346
    [19]
    曹志远.板壳振动理论[M].北京:中国铁道出版社, 1989:32-51.

    CAO Z Y.Vibration theory of plates and shells[M].Beijing:China Railway Publishing House, 1989:32-51(in Chinese).
    [20]
    毛柳伟, 王安稳, 胡明勇.粘-弹层合悬臂板瞬态响应的近似解析解[J].固体力学学报, 2010, 31(4):379-384. http://www.oalib.com/paper/4263984

    MAO L W, WANG A W, HU M Y.Approximate analytical solution for transient response of a visco-elastic laminated cantilever plate[J].Chinese Journal of Solid Mechanics, 2010, 31(4):379-384(in Chinese). http://www.oalib.com/paper/4263984
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(14)  / Tables(4)

    Article Metrics

    Article views(600) PDF downloads(306) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return