Zeng Liang, Li Lin. Design of damping-ring for vibration control in labyrinth air seals[J]. Journal of Beijing University of Aeronautics and Astronautics, 2007, 33(05): 518-522. (in Chinese)
Citation: LI Lin, XUE Zheng, FAN Yuet al. Efficiency of twist deformation of composite plate actuated by MFC[J]. Journal of Beijing University of Aeronautics and Astronautics, 2018, 44(2): 229-240. doi: 10.13700/j.bh.1001-5965.2017.0107(in Chinese)

Efficiency of twist deformation of composite plate actuated by MFC

doi: 10.13700/j.bh.1001-5965.2017.0107
Funds:

National Natural Science Foundation of China 51675022

More Information
  • Corresponding author: FAN Yu, E-mail:fanyu04@buaa.edu.cn
  • Received Date: 28 Feb 2017
  • Accepted Date: 09 Jun 2017
  • Publish Date: 20 Feb 2018
  • More and more composite structures containing active materials are applied to adaptive structures. The integration of active materials in structures has brought new characteristics but made the design more complicated. In this paper, the deformation of the active composite plate actuated by the macro fiber material (MFC) is studied. The purpose is to obtain the relationship between the twist deformation of the actuated composite plate and the MFC fiber laying and the actuation mode. Based on the elastic mechanics theory, the relationship between the strain of active fiber actuated by voltage and induced internal force and deformation of the composite plate is established. The solution of the problem is conducted using Ritz's method and taking the displacement function as a linear combination of the two-dimension beam-modes. The solving equation of the displacement field actuated by MFC is derived, and the analytical result is verified by the experiment. In order to evaluate the actuation effect of MFC composite plate under different conditions and to consider the bending-torsion coupling characteristics of composite plate deformation, the concept and the calculation of actuation efficiency of an active composite plate are proposed, which is based on the definition of equivalent bending and twist angle of section. Then the evolution of the actuation efficiency with the laying angle of MFC and the mode of input voltage is analyzed. Corresponding to different constraint conditions, the laying of piezoelectric fiber-direction and the selection of actuation-mode are given based on the obtained analysis results.

     

  • [1]
    BARBARINO S, BILGEN O, AJAJ R M, et al.A review of morphing aircraft[J].Journal of Intelligent Material Systems & Structures, 2011, 22(9):823-877.
    [2]
    SOFLA A Y N, MEGUID S A, TAN K T, et al.Shape morphing of aircraft wing:Status and challenges[J].Materials & Design, 2010, 31(3):1284-1292.
    [3]
    冷劲松, 孙健, 刘彦菊.智能材料和结构在变体飞行器上的应用现状与前景展望[J].航空学报, 2014, 35(1): 29-45.

    LENG J S, SUN J, LIU Y J.Application status and future prospect of smart materials and structures in morphing aircraft[J].Acta Aeronautica et Astronautica Sinica, 2014, 35(1): 29-45 (in Chinese).
    [4]
    MANZO J, GARCIA E, WICKENHEISER A, et al.Design of a shape-memory alloy actuated macro-scale morphing aircraft mechanism[J].Proceedings of SPIE-the International Society for Optical Engineering, 2005, 5764:232-240. doi: 10.1117/12.601372.full
    [5]
    MANZO J, GARCIA E.Demonstration of an in situ morphing hyperelliptical cambered span wing mechanism[J].Smart Materials & Structures, 2010, 19(19):328-335.
    [6]
    SHELTON A, TOMAR A, PRASAD J, et al.Active multiple winglets for improved unmanned-aerial-vehicle performance[J].Journal of Aircraft, 2015, 43(43):110-116.
    [7]
    BARTLEY-CHO J D, WANG D P, MARTIN C A, et al.Development of high-rate, adaptive trailing edge control surface for the smart wing phase 2 wind tunnel model[J].Journal of Intelligent Material Systems & Structures, 2004, 15(4):279-291. doi: 10.1177/1045389X04042798
    [8]
    BARRETT R M.Design, fabrication, and testing of a new twist-active wing design[J].Proceedings of SPIE-the International Society for Optical Engineering, 1998, 3329. doi: 10.1117/12.316919.full
    [9]
    柴双双, 张卫平, 柯希俊, 等.仿昆扑翼微飞行器中压电驱动器的性能参数分析[J].上海交通大学学报, 2015, 49(5):663-668.

    CHAI S S, ZHANG W P, KE X J, et al.Piezoelectric actuators for insect-like flapping-wing micro aerial vehicle[J].Journal of Shanghai Jiaotong University, 2015, 49(5):663-668(in Chinese).
    [10]
    程春晓, 李道春, 向锦武, 等.柔性后缘可变形机翼气动特性分析[J].北京航空航天大学学报, 2016, 42(2):360-367.

    CHENG C X, LI D C, XIANG J W, et al.Analysis on aerodynamic characteristics of morphing wing with flexible trailing edge[J].Journal of Beijing University of Aeronautics and Astronautics, 2016, 42(2):360-367(in Chinese).
    [11]
    LIN X J, ZHOU K C, ZHANG X Y.Development, modeling and application of piezoelectric fiber composites[J].Transactions of Nonferrous Metals Society of China, 2013, 23(1):98-107. doi: 10.1016/S1003-6326(13)62435-8
    [12]
    COBB R, BROWNING J, CANFIELD R, et al. F-16 ventral fin buffet alleviation using piezoelectric actuators[C]//AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Reston: AIAA, 2009.
    [13]
    OHANIAN O, HICKLING C, STILTNER B, et al. Piezoelectric morphing versus servo-actuated MAV control surfaces[C]//AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Resson: AIAA, 2012: 23-26.
    [14]
    LIU S, TONG L, LIN Z.Simultaneous optimization of control parameters and configurations of PZT actuators for morphing structural shapes[J].Finite Elements in Analysis & Design, 2008, 44(6-7):417-424.
    [15]
    LUO Q, TONG L.Design and testing for shape control of piezoelectric structures using topology optimization[J].Engineering Structures, 2015, 97:90-104. doi: 10.1016/j.engstruct.2015.04.006
    [16]
    QUAN N, TONG L.Shape control of smart composite plate with non-rectangular piezoelectric actuators[J].Composite Structures, 2004, 66(1-4):207-214. doi: 10.1016/j.compstruct.2004.04.039
    [17]
    MUKHERJEE A, JOSHI S.Piezoelectric sensor and actuator spatial design for shape control of piezolaminated plates[J].AIAA Journal, 2015, 40(6):1204-1210.
    [18]
    BÜTER A, BREITBACH E.Adaptive blade twist-calculations and experimental results[J].Aerospace Science & Technology, 1999, 4(5):309-319.
    [19]
    曹志远.板壳振动理论[M].北京:中国铁道出版社, 1989:32-51.

    CAO Z Y.Vibration theory of plates and shells[M].Beijing:China Railway Publishing House, 1989:32-51(in Chinese).
    [20]
    毛柳伟, 王安稳, 胡明勇.粘-弹层合悬臂板瞬态响应的近似解析解[J].固体力学学报, 2010, 31(4):379-384.

    MAO L W, WANG A W, HU M Y.Approximate analytical solution for transient response of a visco-elastic laminated cantilever plate[J].Chinese Journal of Solid Mechanics, 2010, 31(4):379-384(in Chinese).
  • Relative Articles

    [1]XIONG F,LI Q,LI J,et al. Time-triggered traffic scheduling-oriented virtual network embedding method[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(6):1982-1990 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0511.
    [2]YANG X X,JIANG Z J,ZHANG Y,et al. Distributed cooperative guidance strategy based on virtual negotiation and rolling horizon optimization[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(1):61-76 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0174.
    [3]ZHANG Y M,DAI Y T,WEI R K,et al. Experiment on dynamic response alleviation of a wing with variable-camber flexible trailing edge[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(10):3239-3249 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0761.
    [4]GENG Z T,ZHAO J Q. Design and development of virtual simulation experiment software of composite piezoelectric materials[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(11):3377-3381 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0826.
    [5]ZHANG Yonghua, WANG Zheng, WANG Shiyu, BAI Yunfei, QIU Likuan. Robust Guidance Method for Reusable Rocket Landing Phase based on UMPSP[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2024.0491
    [6]CHEN N T,MAN Y Z,LI J H. Risk assessment method for civil aircraft approach and landing at high plateau based on QAR data[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(1):77-85 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0186.
    [7]FENG X R,GAO Z D,WANG J,et al. Research on aircraft landing scheduling problem based on compact subsequence[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(8):2421-2431 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0656.
    [8]ZHANG Kefan, PENG Yong, LI Xiangyu, LU Fangyun, WANG Zhe. Dynamic response law of concrete gravity dam under contact explosion load[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2024.0105
    [9]LI Dan, CUI Wen-feng, CHEN Gui-peng. ptimal dynamic response exploration for SIMO Buck converter based on differential evolution algorithm[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2023.0356
    [10]YUAN Kaihua, ZHANG Zhuoge, ZHA Jun, CHENG Meng, JI Hongli, LIU Kai, TIAN Haitao. WIND TUNNEL TEST FOR AEROELASTIC DYNAMIC RESPONSE SUPRESSION OF SUPERSONIC PANEL[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2024.0602
    [11]CAI Jing, NIU Yu-fa, WANG Yan, LI Yue, DAI Xuan. A Simulation analysis of human-machine closed-loop dynamics of aircraft landing and running attitude under cross-rheumatic slip conditions[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2023.0599
    [12]JIA Bao-hui, TAN Chu-yi, GAO Yuan, WANG Yu-xin. Health assessment of landing gear hydraulic retraction/extension system based on GRNN[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2023.0708
    [13]LIN Jun-ting, NI Ming-jun. Adaptive model predictive control of virtual coupled based on artificial potential field[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2023.0544
    [14]WANG Y L,FENG S,BU C,et al. Stability characteristics of hybrid wing-body aircraft based on virtual flight[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(9):2337-2344 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0684.
    [15]ZHANG Yang, QIN Ning-ning. Dual-Dimensional Partition Localization Algorithm Under AP Virtual Location Perception[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2023.0274
    [16]ZHANG Y X,WANG X J,WANG S P,et al. Mechanism of butterfly forward flight and prototype verification based on characteristic motion observation[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(7):1651-1660 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0497.
    [17]NI Yu-de, LI Xin-xin, LIU Rui-hua, GUO Jian-li, WANG Yan-yang. Delineation of the Instrument Landing System Localizer Protection Area[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2023.0592
    [18]WANG Xiangzhang, WANG He, XU Bohao. Hard landing risk prediction of civil aircraft based on GBDT-GS method[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2023.0443
    [19]YAN Y F,GAN X S,WU Y R,et al. Aircraft landing safety quality analysis based on modified FRAM method[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(8):1964-1973 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0574.
    [20]SUN H,YIN Q Z,WEI X H,et al. Research of single leg drop performance of new adaptive landing gear[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(4):990-998 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0354.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(14)  / Tables(4)

    Article Metrics

    Article views(649) PDF downloads(306) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return