Citation: | XU Wangqiang, WANG Lixin. Influence of aerodynamic parameters on short-period mode characteristics of closed-loop aircraft[J]. Journal of Beijing University of Aeronautics and Astronautics, 2018, 44(2): 333-341. doi: 10.13700/j.bh.1001-5965.2017.0109(in Chinese) |
Owing to the relaxed static stability technology applied to the modern high-performance fighter aircraft, the design of an advanced flight control system is required to confirm its closed-loop system for an excellent dynamic property within the flight envelope. The ability of flight control system (FCS) is limited as a result of the control effectiveness and deflection rate of the control surface. The designed aerodynamic parameters of aircraft must meet certain requirements to confirm good flying qualities in its closed-loop system. This paper presents a new method which describes the influence of various aerodynamic parameters on short-period mode characteristics of closed-loop aircraft. A relaxed static stability aircraft with model reference dynamic inversion control law is provided to investigate the influence rules of various aerodynamic parameters on short-period mode characteristics based on the equivalent parameter criterion. The results show that the elevator control effectiveness has a great influence on the short-period mode characteristics and the aerodynamic parameters need to match a certain match value set to keep excellent short-period mode flying qualities. The proposed method can provide reference for flight control system design with the optimized aerodynamic parameters for relaxed static stability aircraft.
[1] |
TRAN T T, NEWMAN B.Nonlinear flight control design for longitudinal dynamics:AIAA-2015-1994[R].Reston:AIAA, 2015.
|
[2] |
方振平, 陈万春, 张曙光.航空飞行器飞行动力学[M].北京:北京航空航天大学出版社, 2005:106.
FANG Z P, CHEN W C, ZHANG S G.Aircraft flight dynamics[M].Beijing:Beihang University Press, 2005:106(in Chinese).
|
[3] |
JANSEN Q J M.Relaxed static stability performance assessment on conventional and unconventional aircraft configurations[D].Delft:Delft University of Technology, 2015.
|
[4] |
NELSON R C.Flight stability and automatic control[M].New York:WCB/McGraw Hill, 1988:72.
|
[5] |
STEVENS B L, LEWIS F L, JOHNSON E N.Aircraft control and simulation:Dynamics, controls design, and autonomous systems[M].Hoboken:John Wiley & Sons, Inc., 2015:192-193.
|
[6] |
龙晋伟, 潘文俊, 王立新.战斗机动态逆控制律对比研究[J].飞行力学, 2013, 31(4):297-300. http://www.cnki.com.cn/Article/CJFDTotal-FHLX201501008.htm
LONG J W, PAN W J, WANG L X.A comparison of nonlinear dynamics inversion control law designs for a fighter aircraft[J].Flight Dynamics, 2013, 31(4):297-300(in Chinese). http://www.cnki.com.cn/Article/CJFDTotal-FHLX201501008.htm
|
[7] |
MITCHELL D G, DOMAN D B, KEY D L, et al.Evolution revolution and challenges of handling qualities[J].Journal of Guidance, Control, and Dynamics, 2004, 27(1):12-28. doi: 10.2514/1.3252
|
[8] |
GRATTON G.Initial airworthiness:An introduction to flying qualities evaluation[M].Berlin:Springer International Publishing, 2015:193-199.
|
[9] |
GERTSEN W M, SHOMBER H A.Longitudinal handing qualities criteria-An evaluation[J].Journal of Aircraft, 1967, 4(4):371-374. doi: 10.2514/3.43851
|
[10] |
KREKELER G.High angel of attack flying qualities criteria[C]//Proceedings of 28th AIAA, Aerospace Sciences Meeting.Reston:AIAA, 1990:1-11.
|
[11] |
YAN Y Y, DONG W H, ZOU Q, et al.Longitudinal inner loop flight controller flight control design by using L1 adaptive control theory[C]//IEEE International Conference on Information and Automation.Piscataway, NJ:IEEE Press, 2015:2965-2970.
|
[12] |
MANNING C, GLEASON D.Flight test results using a low order equivalent systems technique to estimate flying qualities[C]//AIAA Atmospheric Flight Mechanics Conference.Reston:AIAA, 1992:231-243.
|
[13] |
杨宇, 陆宇平.基于飞行品质的飞机控制增稳系统参数估计[J].航空计算技术, 2011, 41(2):108-112. http://www.cqvip.com/QK/90843X/201102/37647320.html
YANG Y, LU Y P.Parameter estimation for control augmentation system based on handling quality requirements[J].Aeronautical Computing Technique, 2011, 41(2):108-112(in Chinese). http://www.cqvip.com/QK/90843X/201102/37647320.html
|
[14] |
李淼, 王立新, 黄成涛.舵面特性对飞翼构型作战飞机短周期品质的影响[J].航空学报, 2009, 30(11):2059-2065. doi: 10.3321/j.issn:1000-6893.2009.11.008
LI M, WANG L X, HUANG C T.Influence of control surface characteristics on short-period mode flying qualities for flying wing aircraft[J].Acta Aeronautica et Astronautica Sinica, 2009, 30(11):2059-2065(in Chinese). doi: 10.3321/j.issn:1000-6893.2009.11.008
|
[15] |
U.S.Department of Defense.Military standard:Flying qualities of piloted air planes:MIL-STD-1797A[S].Washington, D.C.:U.S.Department of Defense, 1990.
|
[16] |
SONNEVELDT L, CHU Q P, MULDER J A.Nonlinear flight control design using constrained adaptive back stepping[J].Journal of Guidance, Control, and Dynamics, 2007, 30(2):322-336. doi: 10.2514/1.25834
|
[17] |
LEWIS F L, STEVENS B L.Aircraft control and simulation[M].Hoboken:John Wiley & Sons, Inc., 1992:107-116.
|
[18] |
SONNEVELDT L, VAN OORT E, CHU Q P, et al.Nonlinear adaptive flight control law design and handling qualities evaluation[C]//Joint 48th IEEE Conference on Decision and Control and 28th Chinese Control Conference.Piscataway, NJ:IEEE Press, 2009:7333-7338.
|
[19] |
柳晓菁, 易建强, 赵冬斌.基于Lyapunov稳定理论设计MRAC系统的简单方法[J].系统仿真学报, 2005, 17(8):1933-1935. http://www.cnki.com.cn/Article/CJFDTOTAL-XTFZ200508039.htm
LIU X J, YI J Q, ZHAO D B.Simple scheme for MRAC system using Lyapunov theory[J].Journal of System Simulation, 2005, 17(8):1933-1935(in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-XTFZ200508039.htm
|
[20] |
MILLER C J.Nonlinear dynamic inversion baseline control law:Flight-test results for the full-scale advanced system tested F/A-18 airplane:AIAA-2011-6468[R].Reston:AIAA, 2011.
|