Citation: | YU Jianbo, LYU Jingxiang, CHENG Hui, et al. Fault diagnosis for rolling bearing based on ITD and improved morphological filter[J]. Journal of Beijing University of Aeronautics and Astronautics, 2018, 44(2): 241-249. doi: 10.13700/j.bh.1001-5965.2017.0114(in Chinese) |
For extracting fault impulse components embedded in the vibration signal with much noise and harmonics, an improved morphological filter algorithm called average combination difference morphological filter (ACDIF) is proposed on the basis of the four basic morphological operators. Then ACDIF is combined with the intrinsic time scale decomposition (ITD) and the ITD-ACDIF method is employed in the fault diagnosis for rolling bearing. In the ITD-ACDIF fault diagnosis method, ITD is applied to the original vibration signal and a series of proper rotation components (PRC) are obtained, and then the kurtosis is regarded as criterion to select effective PR components which contain much fault-related information. After that, ACDIF filtering is performed on each effective PR in order to pick up bidirectional impulses, and filtered PRs are combined into a signal. Finally, the fault feature is extracted from reconstructed signal by amplitude spectrum. The experimental results on simulated signal and actual bearing vibration signal demonstrate that the proposed method can effectively suppress noise interference and extracting the characteristics of impact fault under the strong background noise to realize fault diagnosis of equipment.
[1] |
YU J.Local and nonlocal preserving projection for bearing defect classification and performance assessment[J].IEEE Transactions on Industrial Electronics, 2012, 59(5):2363-2376. doi: 10.1109/TIE.2011.2167893
|
[2] |
李舜酩, 郭海东, 李殿荣.振动信号处理方法综述[J].仪器仪表学报, 2013, 34(8):1907-1915. http://d.wanfangdata.com.cn/Periodical_yqyb201308031.aspx
LI S M, GUO H D, LI D R.Review of vibration signal processing methods[J].Chinese Journal of Scientific Instrument, 2013, 34(8):1907-1915(in Chinese). http://d.wanfangdata.com.cn/Periodical_yqyb201308031.aspx
|
[3] |
FREI M G, OSORIO I.Intrinsic time-scale decomposition:Time-frequency-energy analysis and real-time filtering of non-stationary signals[J].Proceedings of the Royal Society A:Mathematical, Physical and Engineering Sciences, 2007, 463(2078):321-342. doi: 10.1098/rspa.2006.1761
|
[4] |
HUANG N E, SHEN Z, LONG S R, et al.The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis[J].Proceedings of the Royal Society A:Mathematical, Physical and Engineering Sciences, 1998, 454(1971):903-995. doi: 10.1098/rspa.1998.0193
|
[5] |
张琳, 黄敏.基于EMD和切片双谱的轴承故障诊断方法[J].北京航空航天大学学报, 2010, 36(3):287-290. http://bhxb.buaa.edu.cn/CN/abstract/abstract8498.shtml
ZHANG L, HUANG M.Fault diagnosis approach for bearing based on EMD and slice bi-spectrum[J].Journal of Beijing University of Aeronautics and Astronautics, 2010, 36(3):287-290(in Chinese). http://bhxb.buaa.edu.cn/CN/abstract/abstract8498.shtml
|
[6] |
程军圣, 李海龙, 杨宇.改进ITD和能量矩在齿轮故障诊断中的应用[J].振动、测试与诊断, 2013, 33(6):954-959. doi: 10.3969/j.issn.1004-6801.2013.06.006
CHENG J S, LI H L, YANG Y.Based on the improved ITD and energy moment to diagnose the gear[J].Journal of Vibration, Measurement & Diagnosis, 2013, 33(6):954-959(in Chinese). doi: 10.3969/j.issn.1004-6801.2013.06.006
|
[7] |
FENG Z, LIN X, ZUO M.Joint amplitude and frequency demodulation analysis based on intrinsic time-scale decomposition for planetary gearbox fault diagnosis[J].Mechanical Systems and Signal Processing, 2016, 72-73:223-240. doi: 10.1016/j.ymssp.2015.11.024
|
[8] |
HU A, YAN X, XIANG L.A new wind turbine fault diagnosis method based on ensemble intrinsic time-scale decomposition and WPT-fractal dimension[J].Renewable Energy, 2015, 83:767-778. doi: 10.1016/j.renene.2015.04.063
|
[9] |
MARAGOS P, SCHAFER R W.Morphological filters-Part Ⅰ:Their set-theoretic analysis and relations to linear shift-invariant filters[J].IEEE Transactions on Acoustics, Speech, and Signal Proceeding, 1987, 35(8):1153-1169. doi: 10.1109/TASSP.1987.1165259
|
[10] |
李兵, 张培林, 刘东升, 等.基于形态梯度解调算子的齿轮故障特征提取[J].振动、测试与诊断, 2010, 30(1):39-42. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zdcsyzd201001009
LI B, ZHANG P L, LIU D S, et al.Feature extraction for gear fault diagnosis using morphological gradient demodulation[J].Journal of Vibration, Measurement & Diagnosis, 2010, 30(1):39-42(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zdcsyzd201001009
|
[11] |
HU Z, WANG C, ZHU J, et al.Bearing fault diagnosis based on an improved morphological filter[J].Measurement, 2016, 80:163-178. doi: 10.1016/j.measurement.2015.11.028
|
[12] |
张平, 张小栋, 董晓妮, 等.自调整复合级联形态滤波算法及应用[J].振动、测试与诊断, 2015, 35(3):459-463. http://industry.wanfangdata.com.cn/dl/Detail/Periodical?id=Periodical_zdcsyzd201503009
ZHANG P, ZHANG X D, DONG X N, et al.Self-adjusting composite cascade morphology filter algorithm and its application[J].Journal of Vibration, Measurement & Diagnosis, 2015, 35(3):459-463(in Chinese). http://industry.wanfangdata.com.cn/dl/Detail/Periodical?id=Periodical_zdcsyzd201503009
|
[13] |
HARALICK R M, STERNBERG S R, ZHUANG X.Image analysis using mathematical morphology[J].IEEE Transactions on Pattern Analysis and Machine Intelligence, 1987, 9(4):532-550. https://dl.acm.org/citation.cfm?id=28802
|
[14] |
章立军, 杨德斌, 徐金梧, 等.基于数学形态滤波的齿轮故障特征提取方法[J].机械工程学报, 2007, 43(2):71-75. http://industry.wanfangdata.com.cn/dl/Detail/Periodical?id=Periodical_jxgcxb200702011
ZHANG L J, YANG D B, XU J W, et al.Approach to extracting gear fault feature based on mathematical morphological filtering[J].Journal of Mechanical Engineering, 2007, 43(2):71-75(in Chinese). http://industry.wanfangdata.com.cn/dl/Detail/Periodical?id=Periodical_jxgcxb200702011
|
[15] |
RAJ A S, MURALI N.Early classification of bearing faults using morphological operators and fuzzy inference[J].IEEE Transactions on Industrial Electronics, 2013, 60(2):567-574. doi: 10.1109/TIE.2012.2188259
|
[16] |
FELDMAN M.Hilbert transform in vibration analysis[J].Mechanical Systems and Signal Processing, 2011, 25(3):735-802. doi: 10.1016/j.ymssp.2010.07.018
|