Citation: | LAN Jie, YUAN Hongjie, YUAN Ming, et al. System reliability assessment under real time-varying environmental stress[J]. Journal of Beijing University of Aeronautics and Astronautics, 2018, 44(2): 406-412. doi: 10.13700/j.bh.1001-5965.2017.0120(in Chinese) |
The traditional reliability evaluation methods only consider the product under constant stress. However, products are often directly exposed to the outdoor natural environment in actual engineering, and the working environment stress or storage environment stress varies with time. Aimed to solve this problem, the natural environmental stress of the typical geographical location is introduced, and the environmental stress variation tendency is derived by using six-parameter polynomial fitting method. Moreover, two modes of the time-varying environmental stress are assumed, and on the basis of Nelson cumulative damage model, the product reliability evaluation method based on accelerated life test data is studied under the real time-varying environmental stress. The results show that the reliability life of the products at different geographical locations is quite different, and the reliability of the products can be evaluated more accurately by introducing the real environmental stress of the geographical location of the product.
[1] |
FARD N, LI C.Optimal simple step stress accelerated life test design for reliability prediction[J].Journal of Statistical Planning & Inference, 2009, 139(5):1799-1808. https://www.sciencedirect.com/science/article/pii/S0378375808002541
|
[2] |
HE Q, CHEN W, PAN J, et al.Improved step stress accelerated life testing method for electronic product[J].Microelectronics Reliability, 2012, 52(11):2773-2780. doi: 10.1016/j.microrel.2012.04.003
|
[3] |
FAN T, HSU T.Constant stress accelerated life test on a multiple-component series system under weibull lifetime distributions[J].Communications in Statistics-Theory and Methods, 2014, 43(10):2370-2383. https://www.researchgate.net/publication/263287651_Constant_Stress_Accelerated_Life_Test_on_a_Multiple-Component_Series_System_under_Weibull_Lifetime_Distributions
|
[4] |
YANG G B.Optimum constant-stress accelerated life-test plans[J].IEEE Transactions on Reliability, 1996, 43(4):575-581. https://www.researchgate.net/profile/Ali_Ismail3/publication/228887206_Optimum_constant-stress_partially_accelerated_life_test_plans_with_type-II_censoring_The_case_of_Weibull_failure_distribution/links/542bc93c0cf277d58e8a35d9.pdf?origin=publication_detail
|
[5] |
YANG L. Correlation between accelerated aging test and real world storage temperature[C]//Joint Propulsion Conference & Exhibit. Reston: AIAA, 2007: 5138-5150. doi: 10.2514/6.2007-5138
|
[6] |
METTAS A. Reliability predictions based on customer usage stress profiles[C]//Proceedings of the Annual Reliability and Maintainability Symposium. Piscataway, NJ: IEEE Press, 2005: 20-25. http://ieeexplore.ieee.org/xpls/icp.jsp?arnumber=1408332
|
[7] |
洪东跑, 赵宇, 马小兵.利用变环境试验数据的可靠性综合评估[J].北京航空航天大学学报, 2009, 35(9):1152-1155. http://bhxb.buaa.edu.cn/CN/abstract/abstract8687.shtml
HONG D P, ZHAO Y, MA X B.Integrated reliability assessment using varied environment test data[J].Journal of Beijing University of Aeronautics and Astronautics, 2009, 35(9):1152-1155(in Chinese). http://bhxb.buaa.edu.cn/CN/abstract/abstract8687.shtml
|
[8] |
洪东跑, 马小兵, 赵宇.基于比例风险模型的可靠性综合评估[J].系统工程与电子技术, 2010, 32(10):2132-2135. doi: 10.3969/j.issn.1001-506X.2010.10.25
HONG D P, MA X B, ZHAO Y.Integrated reliability assessment based on proportional risk model[J].Systems Engineering and Electronics, 2010, 32(10):2132-2135(in Chinese). doi: 10.3969/j.issn.1001-506X.2010.10.25
|
[9] |
HONG Y, MA H, MEEKER W Q.A tool for evaluating time-varying-stress accelerated life test plans with log-location-scale distributions[J].IEEE Transactions on Reliability, 2010, 59(4):620-627. doi: 10.1109/TR.2010.2083252
|
[10] |
BENAVIDES E M.Reliability model for step-stress and variable-Stress Situations[J].IEEE Transactions on Reliability, 2011, 60(1):219-233. doi: 10.1109/TR.2010.2085574
|
[11] |
BIAN L, GEBRAEEL N.Stochastic methodology for prognostics under continuously varying environmental profiles[J].Statistical Analysis & Data Mining, 2012, 6(3):260-270. doi: 10.1002/sam.11154/abstract?globalMessage=0
|
[12] |
张国龙, 蔡金燕, 梁玉英, 等.时变环境下基于加速寿命试验的产品故障预测方法[J].海军工程大学学报, 2013, 25(1):108-112. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hjgcdxxb201301017
ZHANG G L, CAI J Y, LIANG Y Y, et al.Fault prediction method based on accelerated life test of products in time-varying conditions[J].Journal of Naval University of Engineering, 2013, 25(1):108-112(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hjgcdxxb201301017
|
[13] |
GONZÁLEZ L C M, BORBÓN M I R, VALLES-ROSALES D J, et al.Reliability model for electronic devices under time varying voltage[J].Quality & Reliability Engineering International, 2015, 32(4):1295-1306. http://onlinelibrary.wiley.com/resolve/doi?DOI=10.1002%2Fqre.1867
|
[14] |
NELSON W.Accelerated life testing-step-stress models and data analyses[J].IEEE Transactions on Reliability, 1980, R-29(2):103-108. doi: 10.1109/TR.1980.5220742
|
[15] |
NOOROSSANA R, SABRI-LAGHAIE K.System reliability with multiple failure modes and time scales[J].Quality & Reliability Engineering International, 2015, 32(3):1109-1126. http://dblp.uni-trier.de/db/journals/qre/qre32.html#NoorossanaS16
|
[16] |
METTAS A, VASSILIOU P. Modeling and analysis of time-dependent stress accelerated life data[C]//Proceedings of the Annual Reliability and Maintainability Symposium. Piscataway, NJ: IEEE Press, 2002: 343-348. http://ieeexplore.ieee.org/xpls/icp.jsp?arnumber=981665
|