Citation: | JIANG Wensong, WANG Zhongyu, ZHANG Li, et al. Inertia mass of force transducers based on a modified Monte Carlo calibration method[J]. Journal of Beijing University of Aeronautics and Astronautics, 2018, 44(2): 342-348. doi: 10.13700/j.bh.1001-5965.2017.0128(in Chinese) |
As an important parameter of a force transducer, the inertia mass can reduce the measurement accuracy of a dynamic force unless it has been accurately estimated. To eliminate the ill-posedness of an calibration model of the inertia mass caused by parameter errors, a modified Monte Carlo calibration (MMCC) method is proposed. Firstly, the mathematical model among the inertia mass, the additional mass, and the measurement response of the force transducer is built. Secondly, the parameter samples of this model including additional mass, acceleration, and voltage are simulated by pseudo-random number generation globally. Thirdly, the valid samples of these parameters are selected by interval screening technique. Finally, the inertia mass of the force transducer is estimated by solving the probability of these valid samples as well as the calibration of the force transducer. The accuracy of the MMCC method is verified by dynamic calibrating a Kistler 9331B force transducer with a sinusoidal vibration exciter. The experimental results show that the estimate of the inertia mass is 83.91g, the estimation error is 0.67%, the standard deviation is 0.74 g, and the calibration error range of the dynamic force is[-7.88%, 11.46%]. It indicates that the calibration error of MMCC method is less than the traditional secondary additional mass method and the multi-additional mass method.
[1] |
VLAJIC N, CHIJIOKE A.Traceable dynamic calibration of force transducers by primary means[J].Metrologia, 2016, 53(4):S136-S148. doi: 10.1088/0026-1394/53/4/S136
|
[2] |
REZAYAT A, NASSIRI V, PAUW D, et al.Identification of dynamic forces using group-sparsity in frequency domain[J].Mechanical Systems and Signal Processing, 2016, 70(71):756-768. https://www.sciencedirect.com/science/article/pii/S0888327015004100
|
[3] |
姚建涛, 李立建, 许允斗, 等.超静定六维力传感器静定测量模型及标定方法[J].仪器仪表学报, 2013, 34(9):1927-1933. http://industry.wanfangdata.com.cn/dl/Detail/Periodical?id=Periodical_yqyb201309002
YAO J T, LI L J, XU Y D, et al.Statically determinate measurement model and calibration method of statically indeterminate six-axis force sensor[J].Chinese Journal of Scientific Instrument, 2013, 34(9):1927-1933(in Chinese). http://industry.wanfangdata.com.cn/dl/Detail/Periodical?id=Periodical_yqyb201309002
|
[4] |
SCHLEGEL C, KIECKENAP G, GLÖCKNER B, et al.Traceable periodic force calibration[J].Metrologia, 2012, 49(3):224-235. doi: 10.1088/0026-1394/49/3/224
|
[5] |
高云凯, 冯海星, 方剑光, 等.基于质量线法的驾驶室惯性参数识别试验研究[J].振动与冲击, 2013, 32(16):193-197. doi: 10.3969/j.issn.1000-3835.2013.16.034
GAO Y K, FENG H X, FANG J G, et al.Experimental study on identification of inertia parameters of truck cab based on mass line method[J].Journal of Vibration and Shock, 2013, 32(16):193-197(in Chinese). doi: 10.3969/j.issn.1000-3835.2013.16.034
|
[6] |
KUMME R.Investigation of the comparison method for the dynamic calibration of force transducers[J].Measurement, 1998, 23(4):239-245. doi: 10.1016/S0263-2241(98)00027-X
|
[7] |
FUJⅡ Y. Proposal for a step response evaluation method for force transducers[J].Measurement Science and Technology, 2003, 14(10):1741-1746. doi: 10.1088/0957-0233/14/10/301
|
[8] |
FUJⅡ Y.Toward dynamic force calibration[J].Measurement, 2009, 42(7):1039-1044. doi: 10.1016/j.measurement.2009.03.006
|
[9] |
SHABANI R, TARIVERDILO S, SALARIEH H.Nonlinear identification of electro-magnetic force model[J].Journal of Zhejiang University:Science A, 2010, 11(3):165-174. doi: 10.1631/jzus.A0900203
|
[10] |
QIAO B, ZHANG X, WANG C, et al.Sparse regularization for force identification using dictionaries[J].Journal of Sound and Vibration, 2016, 368(1):71-86. https://www.sciencedirect.com/science/article/pii/S0022460X16000596
|
[11] |
汪凤泉, 许秀之.动态力传感器校准的两次配重消去法[J].计量学报, 1990, 11(4):304-310. http://industry.wanfangdata.com.cn/dl/Detail/Periodical?id=Periodical_hkjcjs201406016
WANG F Q, XU X Z.The elimination method by adding balance weight twice in calibration of dynamic force transducer[J].Acta Metrologica Sinica, 1990, 11(4):304-310(in Chinese). http://industry.wanfangdata.com.cn/dl/Detail/Periodical?id=Periodical_hkjcjs201406016
|
[12] |
孙兴盛, 刘杰, 丁飞, 等.基于矩阵摄动的随机结构动态载荷识别技术[J].机械工程学报, 2014, 50(13):148-156. http://industry.wanfangdata.com.cn/dl/Detail/Periodical?id=Periodical_jxgcxb201413020
SUN X S, LIU J, DING F, et al.Identification method of dynamic loads for stochastic structures based on matrix perturbation theory[J].Journal of Mechanical Engineering, 2014, 50(13):148-156(in Chinese). http://industry.wanfangdata.com.cn/dl/Detail/Periodical?id=Periodical_jxgcxb201413020
|
[13] |
杨子凯, 王建林, 于涛, 等.基于预测误差法的加速度传感器动态模型参数辨识[J].仪器仪表学报, 2015, 36(6):1244-1249. http://www.cnki.com.cn/Article/CJFDTotal-YQXB201506007.htm
YANG Z K, WANG J L, YU T, et al.Dynamic model parameter identification of the acceleration sensor based on the prediction error method[J].Chinese Journal of Scientific Instrument, 2015, 36(6):1244-1249(in Chinese). http://www.cnki.com.cn/Article/CJFDTotal-YQXB201506007.htm
|
[14] |
THOMAS B, SARA S, POSSOLO A.Force calibration using errors in variables regression and Monte Carlo uncertainty evaluation[J].Metrologia, 2016, 53(3):965-971. doi: 10.1088/0026-1394/53/3/965
|
[15] |
王中宇, 刘智敏, 夏新涛, 等.测量误差与不确定度评定[M].北京:科学出版社, 2008:17-21.
WANG Z Y, LIU Z M, XIA X T, et al.Measurement error and uncertainty evaluation[M].Beijing:Science Press, 2008:17-21(in Chinese).
|
[16] |
JIANG W S, WANG Z Y, MOURELATOS Z P.Application of non-equidistant fractional order accumulation model on trajectory prediction of space manipulator[J].IEEE/ASME Transactions on Mechatronics, 2016, 21(3):1420-1427. doi: 10.1109/TMECH.2016.2517183
|